中小学教育资源及组卷应用平台
九年级数学第五章《圆》单元测试题B
时间120分钟,满分150分
一.选择题(每题4分,共48分)
1.以已知点O为圆心,已知线段a为半径作圆,可以作( )
A.1个 B.2个 C.3个 D.无数个
2.在一扇形统计图中,有一扇形的圆心角为60°,则此扇形占整个圆的( )
A. B. C. D.
3.四边形ABCD内接于⊙O,BC是⊙O的直径,若∠ADC=120°,则∠ACB等于( )
A.30° B.40° C.60° D.80°
4.下列命题是真命题的个数是( )
①直径所对的角是90°;②三点确定一个圆;③圆的切线垂直于过切线的半径;④相等的弦所对的圆周角相等;⑤三角形的内心是三角平分线交点;⑥三角形外心到三角形三个顶点距离相等;
A.2个 B.3个 C.4个 D.5个
5如图,正五边形ABCDE内接于⊙O,连接AC,则∠ACD的度数是( )
A.72° B.70° C.60° D.45°
6.已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有( )
A.4个 B.3个 C.2个 D.1个
如图,AB是⊙O的直径,D,C是⊙O上的点,∠ADC=115°,则∠BAC的度数是( )
A.25° B.30° C.35° D.40°
(
第5题
)
(
第7题
)
8.如图,⊙O是△ABC的外接圆,半径为4,连接OB,OC,OA,若∠CAO=40°,∠ACB=70°,则阴影部分的面积是( )
A.π B.π C.π D.π
9.如图,点I为△ABC的内心,连接AI并延长,交△ABC的外接圆于点D,点E为弦AC的中点,连接CD,EI,IC,当AI=2CD,IC=6,ID=5时,IE的长为( )
A.5 B.4.5 C.4 D.3.5
10.圆柱形油桶(有盖)的底面直径为0.6m,母线长为1m,则油桶的表面积为( )
A. 1.92π B. 0.78π C. 0.69π D. 0.6π
11.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上一点,且∠EPF=45°,则图中阴影部分面积为( )
A.4-π B.4-2π C.8+π D.8-2π
12.如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为( )
A.1 B.2﹣1 C. D.﹣1
(
第11题
) (
第8题
)
(
第9题
) (
第12题
)
二.填空题(每题4分,共24分)
13.一个圆柱形容器的底面直径为2dm,要把一块圆心角为240°的扇形铁板做一个圆锥形的盖子,做成的盖子要能盖住圆柱形容器顶部,这个圆锥底面半径至少要有 dm.
14.如图,在半径为4.5的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是 .
15.如图,在△ABC中,∠B=90°,⊙O过点A、C,与AB交于点D,与BC相切于点C,若∠A=32°,则∠ADO= .
16.如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,OC.若sin∠BAC=,则tan∠BOC= .
17.将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是8cm、2cm,重叠阴影部分的量角器弧所对的扇形圆心角∠AOB=120°,若用该扇形AOB 围成一个圆锥的侧面(接缝处不重叠),则该圆锥的底面半径为 cm.
18.如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为 .
(
第15题
) (
第16题
) (
第17题
) (
第14题
) (
第18题
)
三、解答题(本大题共7小题,满分78分)
19.(本题8分)如图,圆的弦AB、CD延长线交于P点,AD、BC交于Q点,∠P=28°,∠AQC=92°,求∠ABC的度数.
第19题
20.(本题10分)如图,点C在以AB为直径的⊙O上,点D是BC的中点,连接OD并延长交⊙O于点E,作∠EBP=∠EBC,BP交OE的延长线于点P.
(1)求证:PB是⊙O的切线;
(2)若AC=2,PD=6,求⊙O的半径.
(
第20题
)
21.(本题10分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.
(1)证明:OD∥BC;
(2)若tan∠ABC=2,证明:DA与⊙O相切;
(
第21题
)
22.(本题12分)如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点D,E是AB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G.
求证:(1)∠ACD=∠F; (2)AC2=AG·AF.
(
第22题
)
23.(本题12分)如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.
(1)求证:DB=DE;
(2)求证:直线CF为⊙O的切线;
(3)若CF=4,求图中阴影部分的面积.
(
第23题
)
24.(本题12分)如图,AB为⊙O的直径,弦CD⊥AB,垂足为点E,CF⊥AF,且CF=CE.
(1)求证:CF是⊙O的切线;
(2)若sin ∠BAC=,求的值.
(
第24题
)
25.(本题14分)如图CD是⊙O直径,A是⊙O上异于C,D的一点,点B是DC延长线上一点,连AB、AC、AD,且∠BAC=∠ADB.
(1)求证:直线AB是⊙O的切线;
(2)若BC=2OC,求tan∠ADB的值;
(3)在(2)的条件下,作∠CAD的平分线AP交⊙O于P,交CD于E,连PC、PD,若AB=2,求AE AP的值.
第五章《圆》单元测试题B
参考答案与试题解析
一.选择题
A.C.A.A.A.B.A.C.C.B. A. D
二.填空题
13. . 14.
15.64° 16. 17. 2 18.12π﹣9
三.解答题
19.60°
20.解:(1)证明:∵AB为直径,
∴∠ACB=90°,
又D为BC中点,O为AB中点,
故OD=,OD∥AC,
∴∠ODB=∠ACB=90°.
∵OB=OE,
∴∠OEB=∠OBE,
又∵∠OEB=∠P+∠EBP,∠OBE=∠OBD+∠EBC,
∴∠P+∠EBP=∠OBD+∠EBC,
又∠EBP=∠EBC,
∴∠P=∠OBD.
∵∠BOD+∠OBD=90°,
∴∠BOD+∠P=90°,
∴∠OBP=90°.
又OB为半径,
故PB是⊙O的切线.
(2)∵AC=2,
由(1)得OD==1,
又PD=6,
∴PO=PD+OD=6+1=7.
∵∠P=∠P,∠BDP=∠OBP=90°,
∴△BDP∽△OBP.
∴,即BP2=OP DP=7×6=42,
∴BP=.
∴OB===.
故⊙O的半径为.
21.解:(1)连接OC,
在△OAD和△OCD中,
∵,
∴△OAD≌△OCD(SSS),
∴∠ADO=∠CDO,
又AD=CD,
∴DE⊥AC,
∵AB为⊙O的直径,
∴∠ACB=90°,即BC⊥AC,
∴OD∥BC;
(2)∵tan∠ABC==2,
∴设BC=a、则AC=2a,
∴AD=AB==,
∵OE∥BC,且AO=BO,
∴OE=BC=a,AE=CE=AC=a,
在△AED中,DE==2a,
在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OE+DE)2=(a+2a)2=a2,
∴AO2+AD2=OD2,
∴∠OAD=90°,
则DA与⊙O相切;
22.①连BC,证∠B=∠ACD=∠F;②证△ACG∽△AFC
23.(1)证明:∵E是△ABC的内心,
∴∠BAE=∠CAE,∠EBA=∠EBC.
∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,
∴∠DBE=∠DEB.
∴DB=DE,
(2)连接CD.
∵DA平分∠BAC,
∴∠DAB=∠DAC.
∴BD=CD.
∵BD=DF,
∴CD=DB=DF.
∴∠BCF=90°.
∴BC⊥CF,
∴CF是⊙O的切线;
(3)连接OD.
∵O、D是BC、BF的中点,CF=4,
∴OD=2,
∵∠BCF=90°,
∴∠BOD=90°,
∴图中阴影部分的面积=扇形BOD的面积﹣△BOD的面积=.
24. (1)证明:连接OC.
∵CE⊥AB,CF⊥AF,CE=CF,
∴AC平分∠BAF,即∠BAF=2∠BAC。
∵∠BOC=2∠BAC,∴∠BOC=∠BAF。
∴OC∥AF。∴CF⊥OC。∴CF是⊙O的切线。
(2)解:∵AB是⊙O的直径,CD⊥AB,
∴CE=ED,∠ACB=∠BEC=90°。
∴S △CBD =2S △CEB ,∠BAC=∠BCE。∴△ABC∽△CBE。
∴ 。∴
25.(1 )证明:连接OA,
∵CD是⊙O的直径,
∴∠CAD=90°,
∴∠OAC+∠OAD=90°,
又∵OA=OD,
∴∠OAD=∠ODA,
又∵∠BAC=∠ADB,
∴∠BAC+∠OAC=90°,
即∠BAO=90°,
∴AB⊥OA,
又∵OA为半径,
∴直线AB是⊙O的切线;
(2)解:∵∠BAC=∠ADB,∠B=∠B,
∴△BCA∽△BAD,
∴,
设半径OC=OA=r,
∵BC=2OC,
∴BC=2r,OB=3r,
在Rt△BAO中,
AB=,
在Rt△CAD中,
tan∠ADC=;
(3)解:在(2)的条件下,AB=2r=2,
∴r=,
∴CD=2,
在Rt△CAD中,
,AC2+AD2=CD2,
解得AC=2,AD=2,
∵AP平分∠CAD,
∴∠CAP=∠EAD,
又∵∠APC=∠ADE,
∴△CAP∽△EAD,
∴,
∴AE AP=AC AD=2×2=4.
(
第25题
)
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)