专题10 三角恒等变换与解三角形小题综合(含解析)- 5年(2020-2024)高考真题数学分项汇编(全国通用)

文档属性

名称 专题10 三角恒等变换与解三角形小题综合(含解析)- 5年(2020-2024)高考真题数学分项汇编(全国通用)
格式 zip
文件大小 1.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-09-25 11:12:28

文档简介

中小学教育资源及组卷应用平台
10 三角恒等变换与解三角形小题综合
考点01 两角和与差的正弦、余弦、正切公式的应用(含拼凑角思想)
1.(2024·全国甲卷·高考真题)已知,则( )
A. B. C. D.
2.(2024·全国新Ⅱ卷·高考真题)已知为第一象限角,为第三象限角,,,则 .
3.(2024·全国新Ⅰ卷·高考真题)已知,则( )
A. B. C. D.
4.(2023·全国新Ⅰ卷·高考真题)已知,则( ).
A. B. C. D.
5.(2022·全国新Ⅱ卷·高考真题)若,则( )
A. B.
C. D.
6.(2020·全国·高考真题)已知2tanθ–tan(θ+)=7,则tanθ=( )
A.–2 B.–1 C.1 D.2
7.(2020·全国·高考真题)已知,则( )
A. B. C. D.
考点02 二倍角公式的应用(含升幂公式与降幂公式)
1.(2024·上海·高考真题)下列函数的最小正周期是的是( )
A. B.
C. D.
2.(2023·全国新Ⅱ卷·高考真题)已知为锐角,,则( ).
A. B. C. D.
3.(2022·北京·高考真题)已知函数,则( )
A.在上单调递减 B.在上单调递增
C.在上单调递减 D.在上单调递增
4.(2022·浙江·高考真题)若,则 , .
5.(2021·北京·高考真题)函数是
A.奇函数,且最大值为2 B.偶函数,且最大值为2
C.奇函数,且最大值为 D.偶函数,且最大值为
6.(2021·全国乙卷·高考真题)( )
A. B. C. D.
7.(2020·全国·高考真题)若,则 .
8.(2020·浙江·高考真题)已知,则 ; .
9.(2020·江苏·高考真题)已知 =,则的值是 .
考点03 辅助角公式的应用
1.(2024·全国甲卷·高考真题)函数在上的最大值是 .
2.(2022·北京·高考真题)若函数的一个零点为,则 ; .
3.(2021·全国乙卷·高考真题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
考点04 解三角形小题综合之求角和求三角函数函数值
1.(2024·全国甲卷·高考真题)在中,内角所对的边分别为,若,,则( )
A. B. C. D.
2.(2023·北京·高考真题)在中,,则( )
A. B. C. D.
3.(2023·全国乙卷·高考真题)在中,内角的对边分别是,若,且,则( )
A. B. C. D.
4.(2021·浙江·高考真题)在中,,M是的中点,,则 , .
5.(2020·全国·高考真题)在△ABC中,cosC=,AC=4,BC=3,则cosB=( )
A. B. C. D.
6.(2020·全国·高考真题)如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB= .
7.(2020·全国·高考真题)在△ABC中,cosC=,AC=4,BC=3,则tanB=( )
A. B.2 C.4 D.8
考点05 解三角形小题综合之求边长或线段
1.(2023·全国甲卷·高考真题)在中,,的角平分线交BC于D,则 .
2.(2021·全国乙卷·高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
3.(2021·全国甲卷·高考真题)在中,已知,,,则( )
A.1 B. C. D.3
考点06 解三角形小题综合之求面积
1.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积 .
2.(2021·浙江·高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则 .
考点08 解三角形小题综合之实际应用
1.(2024·上海·高考真题)已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则 (精确到0.1度)
2.(2021·全国乙卷·高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )
A.表高 B.表高
C.表距 D.表距
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
10 三角恒等变换与解三角形小题综合
考点01 两角和与差的正弦、余弦、正切公式的应用(含拼凑角思想)
1.(2024·全国甲卷·高考真题)已知,则( )
A. B. C. D.
【答案】B
【分析】先将弦化切求得,再根据两角和的正切公式即可求解.
【详解】因为,
所以,,
所以,
故选:B.
2.(2024·全国新Ⅱ卷·高考真题)已知为第一象限角,为第三象限角,,,则 .
【答案】
【分析】法一:根据两角和与差的正切公式得,再缩小的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.
【详解】法一:由题意得,
因为,,
则,,
又因为,
则,,则,
则,联立 ,解得.
法二: 因为为第一象限角,为第三象限角,则,
,,

故答案为:.
3.(2024·全国新Ⅰ卷·高考真题)已知,则( )
A. B. C. D.
【答案】A
【分析】根据两角和的余弦可求的关系,结合的值可求前者,故可求的值.
【详解】因为,所以,
而,所以,
故即,
从而,故,
故选:A.
4.(2023·全国新Ⅰ卷·高考真题)已知,则( ).
A. B. C. D.
【答案】B
【分析】根据给定条件,利用和角、差角的正弦公式求出,再利用二倍角的余弦公式计算作答.
【详解】因为,而,因此,
则,
所以.
故选:B
【点睛】方法点睛:三角函数求值的类型及方法
(1)“给角求值”:一般所给出的角都是非特殊角,从表面来看较难,但非特殊角与特殊角总有一定关系.解题时,要利用观察得到的关系,结合三角函数公式转化为特殊角的三角函数.
(2)“给值求值”:给出某些角的三角函数值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.
(3)“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角,有时要压缩角的取值范围.
5.(2022·全国新Ⅱ卷·高考真题)若,则( )
A. B.
C. D.
【答案】C
【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.
【详解】[方法一]:直接法
由已知得:,
即:,
即:
所以
故选:C
[方法二]:特殊值排除法
解法一:设β=0则sinα +cosα =0,取,排除A, B;
再取α=0则sinβ +cosβ= 2sinβ,取β,排除D;选C.
[方法三]:三角恒等变换
所以

故选:C.
6.(2020·全国·高考真题)已知2tanθ–tan(θ+)=7,则tanθ=( )
A.–2 B.–1 C.1 D.2
【答案】D
【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.
【详解】,,
令,则,整理得,解得,即.
故选:D.
【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题.
7.(2020·全国·高考真题)已知,则( )
A. B. C. D.
【答案】B
【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.
【详解】由题意可得:,
则:,,
从而有:,
即.
故选:B.
【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.
考点02 二倍角公式的应用(含升幂公式与降幂公式)
1.(2024·上海·高考真题)下列函数的最小正周期是的是( )
A. B.
C. D.
【答案】A
【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .
【详解】对A,,周期,故A正确;
对B,,周期,故B错误;
对于选项C,,是常值函数,不存在最小正周期,故C错误;
对于选项D,,周期,故D错误,
故选:A.
2.(2023·全国新Ⅱ卷·高考真题)已知为锐角,,则( ).
A. B. C. D.
【答案】D
【分析】根据二倍角公式(或者半角公式)即可求出.
【详解】因为,而为锐角,
解得:.
故选:D.
3.(2022·北京·高考真题)已知函数,则( )
A.在上单调递减 B.在上单调递增
C.在上单调递减 D.在上单调递增
【答案】C
【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.
【详解】因为.
对于A选项,当时,,则在上单调递增,A错;
对于B选项,当时,,则在上不单调,B错;
对于C选项,当时,,则在上单调递减,C对;
对于D选项,当时,,则在上不单调,D错.
故选:C.
4.(2022·浙江·高考真题)若,则 , .
【答案】
【分析】先通过诱导公式变形,得到的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出,接下来再求.
【详解】[方法一]:利用辅助角公式处理
∵,∴,即,
即,令,,
则,∴,即,
∴ ,
则.
故答案为:;.
[方法二]:直接用同角三角函数关系式解方程
∵,∴,即,
又,将代入得,解得,
则.
故答案为:;.
5.(2021·北京·高考真题)函数是
A.奇函数,且最大值为2 B.偶函数,且最大值为2
C.奇函数,且最大值为 D.偶函数,且最大值为
【答案】D
【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.
【详解】由题意,,所以该函数为偶函数,
又,
所以当时,取最大值.
故选:D.
6.(2021·全国乙卷·高考真题)( )
A. B. C. D.
【答案】D
【分析】由题意结合诱导公式可得,再由二倍角公式即可得解.
【详解】由题意,
.
故选:D.
7.(2020·全国·高考真题)若,则 .
【答案】
【分析】直接利用余弦的二倍角公式进行运算求解即可.
【详解】.
故答案为:.
【点睛】本题考查了余弦的二倍角公式的应用,属于基础题.
8.(2020·浙江·高考真题)已知,则 ; .
【答案】
【分析】利用二倍角余弦公式以及弦化切得,根据两角差正切公式得
【详解】,

故答案为:
【点睛】本题考查二倍角余弦公式以及弦化切、两角差正切公式,考查基本分析求解能力,属基础题.
9.(2020·江苏·高考真题)已知 =,则的值是 .
【答案】
【分析】直接按照两角和正弦公式展开,再平方即得结果.
【详解】
故答案为:
【点睛】本题考查两角和正弦公式、二倍角正弦公式,考查基本分析求解能力,属基础题.
考点03 辅助角公式的应用
1.(2024·全国甲卷·高考真题)函数在上的最大值是 .
【答案】2
【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.
【详解】,当时,,
当时,即时,.
故答案为:2
2.(2022·北京·高考真题)若函数的一个零点为,则 ; .
【答案】 1
【分析】先代入零点,求得A的值,再将函数化简为,代入自变量,计算即可.
【详解】∵,∴

故答案为:1,
3.(2021·全国乙卷·高考真题)函数的最小正周期和最大值分别是( )
A.和 B.和2 C.和 D.和2
【答案】C
【分析】利用辅助角公式化简,结合三角函数周期性和值域求得函数的最小正周期和最大值.
【详解】由题,,所以的最小正周期为,最大值为.
故选:C.
考点04 解三角形小题综合之求角和求三角函数函数值
1.(2024·全国甲卷·高考真题)在中,内角所对的边分别为,若,,则( )
A. B. C. D.
【答案】C
【分析】利用正弦定理得,再利用余弦定理有,由正弦定理得到的值,最后代入计算即可.
【详解】因为,则由正弦定理得.
由余弦定理可得:,
即:,根据正弦定理得,
所以,
因为为三角形内角,则,则.
故选:C.
2.(2023·北京·高考真题)在中,,则( )
A. B. C. D.
【答案】B
【分析】利用正弦定理的边角变换与余弦定理即可得解.
【详解】因为,
所以由正弦定理得,即,
则,故,
又,所以.
故选:B.
3.(2023·全国乙卷·高考真题)在中,内角的对边分别是,若,且,则( )
A. B. C. D.
【答案】C
【分析】首先利用正弦定理边化角,然后结合诱导公式和两角和的正弦公式求得的值,最后利用三角形内角和定理可得的值.
【详解】由题意结合正弦定理可得,
即,
整理可得,由于,故,
据此可得,
则.
故选:C.
4.(2021·浙江·高考真题)在中,,M是的中点,,则 , .
【答案】
【分析】由题意结合余弦定理可得,进而可得,再由余弦定理可得.
【详解】由题意作出图形,如图,
在中,由余弦定理得,
即,解得(负值舍去),
所以,
在中,由余弦定理得,
所以;
在中,由余弦定理得.
故答案为:;.
5.(2020·全国·高考真题)在△ABC中,cosC=,AC=4,BC=3,则cosB=( )
A. B. C. D.
【答案】A
【分析】根据已知条件结合余弦定理求得,再根据,即可求得答案.
【详解】在中,,,
根据余弦定理:
可得 ,即

故.
故选:A.
【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.
6.(2020·全国·高考真题)如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB= .
【答案】
【分析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.
【详解】,,,
由勾股定理得,
同理得,,
在中,,,,
由余弦定理得,

在中,,,,
由余弦定理得.
故答案为:.
【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.
7.(2020·全国·高考真题)在△ABC中,cosC=,AC=4,BC=3,则tanB=( )
A. B.2 C.4 D.8
【答案】C
【分析】先根据余弦定理求,再根据余弦定理求,最后根据同角三角函数关系求
【详解】设
故选:C
【点睛】本题考查余弦定理以及同角三角函数关系,考查基本分析求解能力,属基础题.
考点05 解三角形小题综合之求边长或线段
1.(2023·全国甲卷·高考真题)在中,,的角平分线交BC于D,则 .
【答案】
【分析】方法一:利用余弦定理求出,再根据等面积法求出;
方法二:利用余弦定理求出,再根据正弦定理求出,即可根据三角形的特征求出.
【详解】
如图所示:记,
方法一:由余弦定理可得,,
因为,解得:,
由可得,

解得:.
故答案为:.
方法二:由余弦定理可得,,因为,解得:,
由正弦定理可得,,解得:,,
因为,所以,,
又,所以,即.
故答案为:.
【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.
2.(2021·全国乙卷·高考真题)记的内角A,B,C的对边分别为a,b,c,面积为,,,则 .
【答案】
【分析】由三角形面积公式可得,再结合余弦定理即可得解.
【详解】由题意,,
所以,
所以,解得(负值舍去).
故答案为:.
3.(2021·全国甲卷·高考真题)在中,已知,,,则( )
A.1 B. C. D.3
【答案】D
【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.
【详解】设,
结合余弦定理:可得:,
即:,解得:(舍去),
故.
故选:D.
【点睛】利用余弦定理及其推论解三角形的类型:
(1)已知三角形的三条边求三个角;
(2)已知三角形的两边及其夹角求第三边及两角;
(3)已知三角形的两边与其中一边的对角,解三角形.
考点06 解三角形小题综合之求面积
1.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是,其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边,则该三角形的面积 .
【答案】.
【分析】根据题中所给的公式代值解出.
【详解】因为,所以.
故答案为:.
2.(2021·浙江·高考真题)我国古代数学家赵爽用弦图给出了勾股定理的证明.弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示).若直角三角形直角边的长分别是3,4,记大正方形的面积为,小正方形的面积为,则 .
【答案】25
【分析】分别求得大正方形的面积和小正方形的面积,然后计算其比值即可.
【详解】由题意可得,大正方形的边长为:,
则其面积为:,
小正方形的面积:,
从而.
故答案为:25.
考点08 解三角形小题综合之实际应用
1.(2024·上海·高考真题)已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则 (精确到0.1度)
【答案】
【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.
【详解】设,
在中,由正弦定理得,
即’
即①
在中,由正弦定理得,
即,即,②
因为,得,
利用计算器即可得,
故答案为:.
2.(2021·全国乙卷·高考真题)魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )
A.表高 B.表高
C.表距 D.表距
【答案】A
【分析】利用平面相似的有关知识以及合分比性质即可解出.
【详解】如图所示:
由平面相似可知,,而 ,所以
,而 ,
即= .
故选:A.
【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录