鲁教版初中数学二轮复习专题复习06:四边形综合(含答案)

文档属性

名称 鲁教版初中数学二轮复习专题复习06:四边形综合(含答案)
格式 zip
文件大小 838.5KB
资源类型 试卷
版本资源 鲁教版
科目 数学
更新时间 2024-09-24 13:24:59

文档简介

中小学教育资源及组卷应用平台
专题六 四边形综合
参考答案
(1)证明:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EDO=∠FBO,
∵点O是BD的中点,
∴DO=BO,
又∵∠EOD=∠FOB,
∴△BOF≌△DOE(ASA);
(2)证明:由(1)已证△BOF≌△DOE,
∴BF=DE,
∵四边形ABCD是矩形,
∴AD∥BC,即DE∥BF,
∴四边形EBFD是平行四边形,
∵EF⊥BD,
∴四边形EBFD是菱形.
跟踪训练1.(1)证明:∵四边形ABCD是平行四边形,
∴∠BAD=∠BCD,AD∥BC,
∵AE、CF分别是∠BAD、∠BCD的平分线,
∴,,
∴∠DAE=∠BCF,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BCF=∠AEB,
∴AE∥FC,
∴四边形AECF是平行四边形,
∵AE=AF,
∴四边形AECF是菱形;
(2)解:连接AC,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AB=EB,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴∠BAE=∠AEB=∠ABEA=60°,
∵△ABE的面积等于,
∴,
∴AB=4,
即AB=AE=EB=4,
由(1)知四边形AECF是菱形,
∴AE=CE=4,
∴∠EAC=∠ECA,
∵∠AEB是△AEC的一个外角,
∴∠AEB=∠EAC+∠ECA=60°,
∴∠EAC=∠ECA=30°,
∴∠BAC=∠BAE+∠EAC=90°,
即AC⊥AB,
由勾股定理得
即平行线AB与DC间的距离是.
例2.(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,CD∥AB,
∴∠D=∠FAD,∠DCE=∠F,
∵E是AD的中点,
∴DE=AE,
∴△CDE≌△FAE(AAS),
∴CE=EF,
∵AE∥BC,
∴==1,
∴AF=AB;
(2)解:∵AG=2,FG=6,
∴AF=FG+AG=6+2=8,
∴AB=AF=8,
∵四边形ABCD是平行四边形,
∴CD=AB=8,
∵∠DCE=∠F,∠FCG=∠FCD,
∴∠F=∠FCG,
∴CG=FG=6,
∵CD∥AF,
∴△DCH∽△AGH,
∴=,即=,
∴GH=1.2.
跟踪训练2.
(1)证明:∵四边形ABCD是菱形,
∴AB=AD,∠B=∠D.
又∵AE⊥BC于点E,AF⊥CD于点F,
∴∠AEB=∠AFD=90°,
在△ABE与△ADF中,
∵.
∴△ABE≌△ADF(AAS).
∴AE=AF;
(2)解:∵四边形ABCD是菱形,
∴∠B+∠BAD=180°.
而∠B=60°,
∴∠BAD=120°.
又∵∠AEB=90°,∠B=60°,
∴∠BAE=30°.
由(1)知△ABE≌△ADF,
∴∠BAE=∠DAF=30°.
∴∠EAF=120°﹣30°﹣30°=60°.
∴△AEF是等边三角形.
∴∠AEF=60°.
例3.(1)证明:在正方形ABCD中,AD=BC,∠BAD=∠ABC=90°,
∵E为AM的中点,
∴AE=BE,
∴∠EAB=∠EBA,
∴∠EAD=∠EBC,
在△EAD和△EBC中,

∴△EAD≌△EBC(SAS),
∴ED=EC;
(2)解:△CMB′是等腰直角三角形,理由如下:
根据旋转的性质可得,EB′=EB,
∵EB=AE=ME,
∴EB′=AE=ME,
∴∠EAB′=∠EB′A,∠EMB′=∠EB′M,
∵∠EAB′+∠EB′A+∠EB′M+∠EMB′=180°,
∴∠AB′M=90°,
∴∠MB′C=90°,
在正方形ABCD中,∠ACB=45°,
∴∠B′MC=45°,
∴B′M=B′C,
∴△CMB′是等腰直角三角形;
(3)解:延长BE交AD于点F,如图所示:
∵∠BEM=2∠BAE,∠B′EM=2∠B′AE,
∵∠BAB′=45°,
∴∠BEB′=90°,
∴∠B′EF=90°,
∵∠DEB′=45°,
∴∠DEF=45°,
∵△EAD≌△EBC,
∴∠AED=∠BEC,
∵∠AEF=∠BEM,
∴∠CEM=∠DEF=45°,
∵∠MCA=45°,
∴∠CEM=∠MCA,
又∵∠CME=∠AMC,
∴△CME∽△AMC,
∴CM:AM=EM:CM,
∵EM=AM,
∴,
在正方形ABCD中,BC=AB=1,
设BM=x,则CM=1﹣x,
根据勾股定理,AM2=1+x2,
∴=(1﹣x)2,
解得x=或x=2+(舍去),
∴BM=.
跟踪训练3.解:(1)∵正方形纸片ABCD的边长为4,4个直角三角形全等,
∴AB=AD=BC=CD=4,AE=DH=x,BE=AH=4﹣x,∠A=∠D=90°,EH=HG=FG=EF,∠AEH=∠GHD,∵∠AEH+∠AHE=90°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形EFGH是正方形,
∴y=AE2+AH2=x2+(4﹣x)2=2x2﹣8x+16;
(2)当y=10时,即2x2﹣8x+16=10,
解得x=1或x=3,
答:当AE取1或3时,四边形EFGH的面积为10;
(3)∵y=2x2﹣8x+16=2(x﹣2)2+8,
∵2>0,
∴y有最小值,最小值为8.
即四边形EFGH的面积有最小值,最小值为8.
例4.(1)证明:
∵四边形ABCD为矩形,
.∴AD∥BF,
∴∠D=∠DCF,
∵G为CD中点,
∴DG=CG,
∵∠AGD=∠FGC,
∴△ADG≌△FCG(ASA);
(2)解:∵四边形ABCD为矩形,
∴∠ABC=90°,
∵CE⊥AF,
∴∠CEF=90°=∠ABC,
∵∠F=∠F,
∴△CEF∽△ABF,
∴=,
∵AB=4,BF=x,
在Rt△ABF中,
AF==,
∵CE=y,
∴=,
∴y=
(或者y=);
(3)解:过点E作EN⊥BF于点N,
∵四边形ABCD为矩形,AD=3,
∴AD=BC=3,
∵AB=4,CF=1,
∴AB=BF,
∴△ABF为等腰直角三角形,
∴∠CFE=∠BAF=45°,
∵CE⊥AF,
∴△CEF为等腰直角三角形,
∴∠ECF=45°,
∵EN⊥CF,
∴EN平分CF,
∴CN=NF=NE=,
在Rt△BNE中,根据勾股定理得:
BE2=BN2+EN2,
∴BE==,
∵∠ECF=∠BAF=45°,
∴∠BAM=∠BCE=135°,
∵BM⊥BE,
∴∠MBA+∠ABE=90°,
∠ABE+∠EBC=90°,
∴∠MBA=∠EBC,
∴△BAM∽△BCE,
∴==,
∴=,
∴BM=.
跟踪训练4.(1)证明:如图①,∵AE⊥BC于点E,
∴∠AEB=90°,
∵∠ABC=45°,
∴∠BAE=∠ABC=45°,
∴BE=AE,
∵将ED绕点E逆时针旋转90°,得到EF,
∴∠DEF=90°,EF=ED,
∴∠BEF=∠AED=90°﹣∠AEF,
∵BE=AE,∠BEF=∠AED,EF=ED,
∴△BEF≌△AED(SAS),
∴BF=AD,
∵四边形ABCD是平行四边形,
∴BC=AD,
∴AE+EC=BE+EC=BC=AD,
∴AE+EC=BF.
(2)解:图②,AE﹣EC=BF;图③,EC﹣AE=BF,
理由:如图②,AE⊥BC交BC的延长线于点E,
∴∠AEB=90°,
∵∠ABC=45°,
∴∠BAE=∠ABC=45°,
∴BE=AE,
∵将ED绕点E逆时针旋转90°,得到EF,
∴∠DEF=90°,EF=ED,
∴∠BEF=∠AED=90°﹣∠AEF,
∵BE=AE,∠BEF=∠AED,EF=ED,
∴△BEF≌△AED(SAS),
∴BF=AD,
∵BC=AD,
∴AE﹣EC=BE+EC=BC=AD,
∴AE﹣EC=BF;
如图③,AE⊥BC交CB的延长线于点E,
∴∠AEB=90°,
∵∠ABC=135°,
∴∠ABE=180°﹣∠ABC=45°,
∴∠BAE=∠ABE=45°,
∴BE=AE,
∵将ED绕点E逆时针旋转90°,得到EF,
∴∠DEF=90°,EF=ED,
∴∠BEF=∠AED=90°﹣∠BED,
∵BE=AE,∠BEF=∠AED,EF=ED,
∴△BEF≌△AED(SAS),
∴BF=AD,
∴BC=AD,
∴EC﹣AE=EC﹣BE=BC=AD,
∴EC﹣AE=BF.
(3)解:如图①,∵AD∥BC,
∴∠DAE=∠AEB=90°,
∵AE=BE=3,DE=5,
∴AD===4,
∴BC=AD=4,
∴CE=BC﹣BE=4﹣3=1;
如图②,∵AD∥BC,
∴∠DAE=∠AEB=90°,
∵AE=BE=3,DE=5,
∴AD===4,
∴BF=AD=4,
∵AE﹣EC=BF,
∴EC=AE﹣BF=3﹣4=﹣1,即CE=﹣1,不符合题意,舍去;
如图③,∵AD∥BC,
∴∠DAE=180°﹣∠AEB=90°,
∵AE=BE=3,DE=5,
∴AD===4,
∴BC=AD=4,
∴CE=BE+BC+3+4=7,
综上所述,CE=1或CE=7,
故答案为:1或7.
例5.解:(1)四边形ABCD是正方形,
理由:∵四边形ABCD是矩形,
∴∠ADC=90°,
∵GD⊥DF,
∴∠FDG=90°,
∴∠ADG=∠CDF,
又∵AG=CF,∠G=∠DFC=90°,
∴△ADG≌△CDF(AAS),
∴AD=CD,
∴四边形ABCD是正方形;
(2)HF=AH+CF,
理由:∵DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,
∴四边形HFDG是矩形,
∴∠G=∠DFC=90°,
∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∴∠ADG=∠CDF,
∴△ADG≌△CDF(AAS),
∴AG=CF,DG=DF,
∴矩形HFDG是正方形,
∴HG=HF=AH+AG=AH+CF;
(3)连接AC,
∵四边形ABCD是正方形,∴∠BAC=45°,
∵AH⊥CE,AH=HM,
∴△AHM是等腰直角三角形,
∴∠HAM=45°,
∴∠HAB=∠MAC,
∵,
∴△AHB∽△AMC,
∴,
即BH=CM.
跟踪训练5.解:如图①,四边形EFMN总是平行四边形.其判定的依据是两组对边分别相平行的四边形是平行四边形;
故答案为:两组对边分别相平行的四边形是平行四边形;
【探究提升】证明:∵四边形纸条ABCD和EFGH是平行四边形,
∴MN∥EF,EN∥FM,
∴四边形EFMN是平行四边形,
∵∠B=∠FEH,
∴AB∥NF,
∵AN∥BE,
∴四边形ABEN是平行四边形,
∴AB=EN,
∵AB=EF,
∴EN=EM,
∴ EFMN是菱形;
【结论应用】解:∵将平行四边形纸条EFGH沿BC或CB平移,
∴四边形GFCP是平行四边形,
∴PG=CF,PG∥CF,
∵DM∥CF,
∴DM∥PG,
∴四边形PDMG是平行四边形,
∵MD=MG,
∴四边形PDMG是菱形,
∴PG=PD,
由【探究提升】知 EFMN是菱形,
∴FM=EF,
∴EF=CD,
∴CE=CP,
∴四边形ECPH是菱形,
∵四边形ECPH的周长为40,
∴HE=PC=10,
∴FG=HE=10,
过G作GQ⊥BC于Q,
∵sin∠EFG==,
∴GQ=8,
∴四边形ECPH的面积为CE GQ=10×8=80.
故答案为:80.
【跟踪练习】
1.(1)证明:
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵BE=DF,
∴AD﹣DF=BC﹣BE,
即AF=EC,
∴四边形AECF是平行四边形,
∵AC=EF,
∴平行四边形AECF是矩形;
(2)解:∵四边形AECF是矩形,
∴∠AEC=∠AEB=90°,
∵AE=BE,AB=2,
∴△ABE是等腰直角三角形,
∴AE=BE=AB=,
∵tan∠ACB==,
∴EC=2AE=2,
∴BC=BE+EC=+2=3,
即BC的长为3.
2.解:(1)四边形OCDE是菱形,理由如下:
∵CD∥OE,
∴∠FDC=∠FOE,
∵CE是线段OD的垂直平分线,
∴FD=FO,ED=OE,CD=CO,
在△FDC和△FOE中,

∴△FDC≌△FOE(ASA),
∴CD=OE,
又ED=OE,CD=CO,
∴ED=OE=CD=CO,
∴四边形OCDE是菱形.
(2)∵四边形ABCD为矩形,
∴∠BCD=∠CDA=90°,DO=CO,
∵CE是线段OD的垂直平分线,
∴CD=CO,
∴CD=CO=DO,
∴△ODC为等边三角形,
∴DO=CD=4,∠ODC=60°,
∴,
在Rt△CDF中,CD=4,DF=2,
由勾股定理得:

由(1)可知:四边形OCDE是菱形,
∴,
∵∠GDF=∠CDA﹣∠ODC=30°,
∴,
∴,
∴.
3.(1)解:结论:点Q在线段PC的垂直平分线上.
理由:连接QC.∵四边形ABCD是菱形,对角线AC,BD相交于点O,
∴BD⊥AC,OA=OC,
∴QA=QC,
∵QA=QP,
∴QC=QP,
∴点Q在线段PC的垂直平分线上;
(2)①证明:如图,∵四边形ABCD是菱形,
∴AB=BC=CD=DA,
∴∠ABD=∠ADB,∠CBD=∠CDB,
∵BD⊥AC,∴∠ADO=∠CDO,
∴∠ABD=∠CBD=∠ADO.
∵∠BAP=∠ADB,
∴∠BAP=∠ABD=∠CBD.
∴AE=BE,∠APB=90°,∠BAP+∠ABP=90°,∠BAP=∠ABD=∠CBD=30°
在 Rt△BPE 中,∠EPB=90°,∠PBE=30°,
∴EP=BE,
∵AE=BE,
∴,
∴AE=2EP;
②如图,连接QC.
∵AB=BC,∠ABC=60°,
∴△ABC 是等边三角形.∠APB=90°,
∴BP=CP,EP=a,
∴AE=2a,AP=3a,
在Rt△APB中,∠APB=90°,
∵,
∴,
∴,
∵AO=CO,∠AOE=∠COQ,OE=OQ,
△AOE≌△COQ(SAS),
∴AE=CQ=2a,∠EAO=∠QCO,
∴AE∥CQ,
∵∠APB=90°,
∴∠QCP=90°,
在Rt△PCQ中,∠QCP=90°,
由勾股定理得 PQ2=PC2+CQ2,
∴PQ2=PC2+CQ2,
∴PQ=a.
4.(1)证明:∵FH⊥EF,
∴∠HFE=90°,
∵GE=GH,
∴,
∴∠E=∠GFE,
∵四边形ABCD是矩形,
∴AB=DC,∠ABC=∠DCB=90°,
∴△ABF≌△DCE(AAS),
∴BF=CE,
∴BF﹣BC=CE﹣BC,
即BE=CF;
(2)解:∵四边形ABCD是矩形,
∴DC⊥BC,即DC⊥EF,AB=CD,BC=AD=4,
∵FH⊥EF,
∴CD∥FH,
∴△ECD∽△EFH,
∴,
∴,
∵,
∴,
设BE=CF=x,
∴EC=x+4,EF=2x+4,
∴,
解得x=1,
∴EF=6.
5.(1)证明:在正方形ABCD中,AD⊥CD,GE⊥CD,
∴∠ADE=∠GEC=90°,
∴AD∥GE,
∴∠DAG=∠EGH.
(2)解:AH⊥EF,理由如下.
连结GC交EF于点O,如图:
∵BD为正方形ABCD的对角线,
∴∠ADG=∠CDG=45°,
又∵DG=DG,AD=CD,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG.
在正方形ABCD中,∠ECF=90°,
又∵GE⊥CD,GF⊥BC,
∴四边形FCEG为矩形,
∴OE=OC,
∴∠OEC=∠OCE,
∴∠DAG=∠OEC,
由(1)得∠DAG=∠EGH,
∴∠EGH=∠OEC,
∴∠EGH+∠GEH=∠OEC+∠GEH=∠GEC=90°,
∴∠GHE=90°,
∴AH⊥EF.
6.解:(1)如图,过点A作AG⊥OC于点G,连接AC,
∵顶点A的坐标为(2,2),
∴OA=,OG=2,AG=2,
∴cos∠AOG==,
∴∠AOG=60°,
∵四边形OABC是菱形,
∴∠BOC=∠AOB=30°,AC⊥BD,AO=OC,
∴△AOC是等边三角形,
∴∠ACO=60°,
∵DE⊥OB,
∴DE∥AC,
∴∠EDO=∠ACO=60°,
∴△EOD是等边三角形,
∴ED=OD=x,
∵DF∥OB,
∴△CDF∽△COB,
∴,
∵A(2,2),AO=4,
则B(6,2),
∴OB=,
∴=,
∴DF=(4﹣x),
∴S=
=,
∴S=(0≤x≤4),
(2)∵S=
=(0≤x≤4),
∴当x=2时,S有最大值,最大值为2.
7.(1)①证明:∵四边形ABCD是正方形,
∴CD=CB,∠DCA=∠BCA=45°
∵CP=CP,
∴△DCP≌△BCP,
∴PD=PB;
②解:∠DPQ的大小不发生变化,∠DPQ=90°;
理由:作PM⊥AB,PN⊥AD,垂足分别为点M、N,如图,
∵四边形ABCD是正方形,
∴∠DAC=∠BAC=45°,∠DAB=90°,
∴四边形AMPN是矩形,PM=PN,
∴∠MPN=90°
∵PD=PQ,PM=PN,
∴Rt△DPN≌Rt△QPM(HL),
∴∠DPN=∠QPM,
∴∠QPN+∠QPM=90°
∴∠QPN+∠DPN=90°,即∠DPQ=90°;
③解:AQ=OP;
理由:作PE⊥AO交AB于点E,作EF⊥OB于点F,如图,
∵四边形ABCD是正方形,
∴∠BAC=45°,∠AOB=90°,
∴∠AEP=45°,四边形OPEF是矩形,
∴∠PAE=∠PEA=45°,EF=OP,
∴PA=PE,
∵PD=PB,PD=PQ,
∴PQ=PB,
作PM⊥AE于点M,
则QM=BM,AM=EM,
∴AQ=BE,
∵∠EFB=90°,∠EBF=45°,
∴BE=EF,
∴AQ=OP;
(2)解:AQ=CP;
理由:四边形ABCD是菱形,∠ABC=60°,
∴AB=BC,AC⊥BD,DO=BO,
∴△ABC是等边三角形,AC垂直平分BD,
∴∠BAC=60°,PD=PB,
∵PD=PQ,
∴PQ=PB,
作PE∥BC交AB于点E,EG∥AC交BC于点G,如图,
则四边形PEGC是平行四边形,∠GEB=∠BAC=60°,∠AEP=∠ABC=60°,
∴EG=PC,△APE,△BEG都是等边三角形,
∴BE=EG=PC,
作PM⊥AB于点M,则QM=MB,AM=EM,
∴QA=BE,
∴AQ=CP.
8.解:(1)如图1,
延长FG,交AC于H,
∵四边形ABCD和四边形BEFG是正方形,
∴BC=CD,FG=BG,CD∥AE,FG∥AE,∠CGH=∠BGF=90°,
∴∠CHG=45°,CD∥FG,
∴∠ACB=∠CHG,∠CDP=∠HFP,∠DCP=∠FHP,
∴CG=GH,
∴CG+BG=GH+FG,
∴BC=FH,
∴CD=FH,
∴△CDP≌△HFP(ASA),
∴点P是DF的中点;
(2)如图2,
△APE是等腰直角三角形,理由如下:
延长EG,交AD的延长线于点M,设DF和EG交于点Q,
∵四边形ABCD和四边形BEFG是正方形,
∴∠BAD=90°,∠BEG=45°,AD=AB,BE=EF,AD∥BC∥EF,∠BAC=45°,
∴∠M=45°,∠M=∠GEF,∠MDQ=∠EFQ,
∴∠M=∠BEG,
∴AM=AE,
∴AM﹣AD=AE﹣AB,
∴DM=BE,
∴DM=EF,
∴△DQM≌△FQE(ASA),
∴DQ=FQ,
∴点Q和点P重合,即:EG与DF的交点恰好也是DF中点P,
∵∠BAC=45°,∠BEG=45°,
∴∠APE=90°,AP=EP,
∴△APE是等腰直角三角形;
(3)如图3,
△APE仍然是等腰直角三角形,理由如下:
延长EP至Q,是PQ=PE,连接DQ,延长DA和FE,交于点N,
∵DP=PF,∠DPQ=∠EPF,
∴△PDQ≌△PFE(SAS),
∴DQ=EF,∠PQD=∠PEF,
∴∠N+∠ADQ=180°,
∵四边形ABCD和四边形BEFG是正方形,
∴∠BAN=∠DAB=90°,∠BEN=∠BEF=90°,AB=AD,BE=EF,
∴∠N+∠ABE=360°﹣∠BAN﹣∠BEN=360°﹣90°﹣90°=180°,DQ=BE,
∴∠ABE=∠ADQ,
∴△ADQ≌△ABE(SAS),
∴AE=AQ,∠DAQ=∠BAE,
∴∠BAE+∠BAQ=∠DAQ+∠BAQ=∠BAD=90°,
∴∠QAE=90°,
∴AP⊥EQ,AP=PE=,
∴△APE是等腰直角三角形.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题六 四边形综合
【课标要求】
1.了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;探索并掌握多边形内角和与外角和公式.
2.理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性.
3.探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分;探索并证明平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.
4.理解两条平行线之间距离的概念,能度量两条平行线之间的 距离。
5.探索并证明矩形、菱形的性质定理:矩形的四个角都是直角, 对角线相等;菱形的四条边相等,对角线互相垂直。探索并证明矩 形、菱形的判定定理:三个角是直角的四边形是矩形,对角线相等的 平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平 行四边形是菱形。正方形既是矩形,又是菱形;理解矩形、菱形、正方形之间的包含关系。
【考点梳理】
考点一:多边形
多边形的定义:在平面内,由若干条不在同一条直线上的线段;首尾顺次相接组成的封闭图形叫做多边形,在多边形中,组成多边形的各条线段叫做多边形的边,每相邻两条边的公共点叫做多边形的顶点,连接不相邻两个顶点的线段叫做多边形的对角线。
多边形的内角和:n边形的内角和=(n-2)180°
正多边形:在平面内,内角都相等,边也相等的多边形叫做正多边形.
(4)多边形的外角:多边形内角的一边与另一边的反向延长线所组成的角,叫做这个多边形的外角.在多边形的每个顶点处取这个多边形的一个外角,它们 的和叫做多边形的外角和,多边形的外角和都等于360°
(5)过n边形的一个顶点共有(n-3)条对角线,n边形共有条对角线.
(6)过n边形的一个顶点将n边形分成(n-2)个三角形.
考点二:相似多边形
(1)定义:对应角相等,对应边成比例的两个多边形叫做相似多边形.
(2)相似多边形的性质:
①相似多边形的周长的比等于相似比;②相似多边形的对应对角线的比等于相似比;
③相似多边形的面积的比等于相似比的平方;
④相似多边形的对应对角线相似,相似比等于相似多边形的相似比.
考点三:平行四边形的性质与判定
1.平行四边形是四边形中应用广泛的一种图形,它是研究特殊四边形的基础,是研究线段相等、角相等和直线平行的根据之一.
2.平行四边形的定义:两组对边分别 的四边形是平行四边形.
两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的 ,叫做两条平行线间的距离.两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处 .
4.平行四边形的性质:
平行四边形的两组对边分别 ;
平行四边形的两组对边分别 ; 符号语言表达:
平行四边形的两组对角分别 ;
平行四边形的对角线互相 .
平行四边形的邻角_______________.
5.平行四边形的判定:
两组对边分别 的四边形是平行四边形;
两组对边分别 的四边形是平行四边形;
一组对边 且 的四边形是平行四边形;
对角线互相 的四边形是平行四边形.
符号语言表达:
AB∥CD.BC∥AD四边形ABCD是平行四边
AB=CD,BC=AD四边形ABCD是平行四边形.
AB平行且相等CD或BC平行且相等AD四边形ABCD是平行四边形.
OA=OC,OB=OD四边形ABCD是平行四边形.
考点四、特殊的平行四边形
1.性质:
(1)矩形:①矩形的四个角都是 ;②矩形的对角线 ;③矩形具有平行四边
形的所有性质.
菱形:①菱形的四条边都 ;②菱形的对角线互相 ,并且每条对角线
平分一组 ;③具有平行四边形所有性质.
正方形:①正方形的四个角都是 ,四条边都 ;②正方形的两条对角
线 ,并且互相 ,每条对角线平分一组 .
2.判定:
(1)矩形:①有一个角是直角的 四边形是矩形;②对角线 的平行四边形是矩形;③有 个角是 的四边形是矩形.
菱形:①对角线 的平行四边形是菱形;②一组邻边 的平行四边是
菱形;③ 条边都相等的四边形是菱形.
正方形:①有一个角是 的菱形是正方形;②有一组邻边 的矩形是方
形;③对角线相等的 是正方形;④对角线互相垂直的 是正方形.
3.面积计算:
(1)矩形:S=长×宽;
(2)菱形:(是对角线)
(3正方形:S=边长2
平行四边形与特殊平行四边形的关系
【典型例题】
例1.如图,矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.
(1)证明:△BOF≌△DOE;
(2)连接BE、DF,证明:四边形EBFD是菱形.
跟踪训练1.如图,平行四边形ABCD中,AE、CF分别是∠BAD、∠BCD的平分线,且E、F分别在边BC、AD上,AE=AF.
(1)求证:四边形AECF是菱形;
(2)若∠ABC=60°,△ABE的面积等于,求平行线AB与DC间的距离.
例2.如图, ABCD中,点E是AD的中点,连结CE并延长交BA的延长线于点F.
(1)求证:AF=AB;
(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.
跟踪训练2.如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连结EF.
(1)求证:AE=AF;
(2)若∠B=60°,求∠AEF的度数.
例3.如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.
(1)求证:ED=EC;
(2)将BE绕点E逆时针旋转,使点B的对应点B′落在AC上,连接MB′.当点M在边BC上运动时(点M不与B,C重合),判断△CMB′的形状,并说明理由.
(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.
跟踪训练3.如图,正方形纸片ABCD的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH.设AE的长为x,四边形EFGH的面积为y.
(1)求y关于x的函数表达式;
(2)当AE取何值时,四边形EFGH的面积为10?
(3)四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
例4.已知:四边形ABCD为矩形,AB=4,AD=3,点F是BC延长线上的一个动点(点F不与点C重合).连接AF交CD于点G.
(1)如图一,当点G为CD的中点时,求证:△ADG≌△FCG;
(2)如图二,过点C作CE⊥AF,垂足为E.连接BE,设BF=x,CE=y.求y关于x的函数关系式;
(3)如图三,在(2)的条件下,过点B作BM⊥BE,交FA的延长线于点M.当CF=1时,求线段BM的长.
跟踪训练4. ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.
(1)当点E在线段BC上,∠ABC=45°时,如图①,求证:AE+EC=BF;
(2)当点E在线段BC延长线上,∠ABC=45°时,如图②;当点E在线段CB延长线上,∠ABC=135°时,如图③,请猜想并直接写出线段AE,EC,BF的数量关系;
(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=   .
例5.综合与实践:
【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF,试猜想四边形ABCD的形状,并说明理由;
【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;
【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.
跟踪训练5.
【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构
成一个四边形EFMN.转动其中一张纸条,发现四边形EFMN总是平行四边形.其判定
的依据是    .
【探究提升】取两张短边长度相等的平行四边形纸条ABCD和EFGH(AB<BC,FG≤BC),其中AB=EF,∠B=∠FEH,将它们按图②放置,EF落在边BC上,FG,EH与边AD分别交于点M,N.求证: EFMN是菱形.
【结论应用】保持图②中的平行四边形纸条ABCD不动,将平行四边形纸条EFGH沿BC或CB平移,且EF始终在边BC上,当MD=MG时,延长CD,HG交于点P,得到图③.若四边形ECPH的周长为40,sin∠EFG=(∠EFG 为锐角),则四边形ECPH的面积为    .

【达标训练】
1.如图,在 ABCD中,点E,F分别在BC,AD上,BE=DF,AC=EF.
(1)求证:四边形AECF是矩形;
(2)若AE=BE,AB=2,tan∠ACB=,求BC的长.
2.如图,矩形ABCD的对角线AC与BD相交于点O,CD∥OE,直线CE是线段OD的垂直平分线,CE分别交OD,AD于点F,G,连接DE.
(1)判断四边形OCDE的形状,并说明理由;
(2)当CD=4时,求EG的长.
3.如图,在菱形ABCD中,对角线AC,BD相交于点O,点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点E.
(1)如图1,连接QA.当QA=QP时,试判断点Q是否在线段PC的垂直平分线上,并说明理由;
(2)如图2,若∠APB=90°,且∠BAP=∠ADB,
①求证:AE=2EP;
②当OQ=OE时,设EP=a,求PQ的长(用含a的代数式表示).
4.如图,已知矩形ABCD,点E在CB延长线上,点F在BC延长线上,过点F作FH⊥EF交ED的延长线于点H,连结AF交EH于点G,GE=GH.
(1)求证:BE=CF;
(2)当=,AD=4时,求EF的长.
5.如图,在正方形ABCD中,G是对角线BD上的一点(与点B,D不重合),GE⊥CD,GF⊥BC,E,F分别为垂足.连接EF,AG,并延长AG交EF于点H.
(1)求证:∠DAG=∠EGH;
(2)判断AH与EF是否垂直,并说明理由.
6.如图,在平面直角坐标系中,菱形OABC的一边OC在x轴正半轴上,顶点A的坐
为(2,2),点D是边OC上的动点,过点D作DE⊥OB交边OA于点E,作DF∥OB交边BC于点F,连接EF,设OD=x,△DEF的面积为S.
(1)求S关于x的函数解析式;
(2)当x取何值时,S的值最大?请求出最大值.
7.[问题探究]
(1)如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.
①求证:PD=PB;
②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;
③探究AQ与OP的数量关系,并说明理由.
[迁移探究]
如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.
8.问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G,以BG为边长向外作正方形BEFG,将正方形BEFG绕点B顺时针旋转.
特例感知:(1)当BG在BC上时,连接DF,AC相交于点P,小红发现点P恰为DF的中点,如图①.针对小红发现的结论,请给出证明;
(2)小红继续连接EG,并延长与DF相交,发现交点恰好也是DF中点P,如图②.根据小红发现的结论,请判断△APE的形状,并说明理由;
规律探究:
(3)如图③,将正方形BEFG绕点B顺时针旋转α,连接DF,点P是DF中点,连接AP,EP,AE,△APE的形状是否发生改变?请说明理由.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)
同课章节目录