义务教育学校课时教案
备课时间: 上课时间:
课题 三角形11.3 多边形及其内角和
11.3.1 多边形 主备人
教学目标 掌握多边形定义及相关概念;掌握正多边形的定义.
核心素养 由求四边形的内角和方法,比较、概括、归纳从而形成内角和的公式,在此过程中要积极探索,寻找多种方法,直到弄懂学会
德育渗透 几何直观,运用图形描述和分析问题运算能力,计算相应的度数符号意识,用几何语言描述过程推理意识,从基本事实出发,按照规则得出结论推理能力,由三角形推导多边形边和对角线的关系
教学重点 多边形、正多边形的定义及相关概念
教学难点 正多边形的定义
学情分析
教学过程 一、新课导入你能从图中想象出几个由一些线段围成的图形吗? 二、推进新课知识点1 多边形的概念多边形的定义: 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由 n 条线段组成,那么这个多边形就叫做 n 边形.想一想 正方形的边、角有什么特点?各个角都相等,各条边都相等的多边形叫做正多边形.多边形___________组成的角叫做它的内角. 多边形的边与它________________组成的角叫做它的外角.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.如图,从五边形ABCDE 的顶点A 出发共有几条对角线?从四边形、五边形、六边形中探究 n 边形的对角线条数 m 与边数 n 之间的关系.n 边形的对角线条数 m 与边数 n 之间的关系: 练习 四边形的一条对角线将四边形分成几个三角形?从五边形的一个顶点出发,可以画出几条对角线?它们将五边形分成了几个三角形?三、随堂演练1.六边形的对角线共有( )A.6条 B.7条 C.8条 D.9条2.下列属于正多边形的是( )A.长方形 B.等边三角形C.梯形 D.圆3.从一个顶点出发的对角线,可以把十边形分成互不重叠的三角形的个数为( )A.7个 B.8个 C.9个 D.10个4.十二边形共有_____条对角线,过一个顶点可作_____条对角线,可把十二边形分成_____个三角形.四、课堂小结在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由 n 条线段组成,那么这个多边形就叫做 n 边形.各个角都相等,各条边都相等的多边形叫做正多边形.n 边形的对角线条数 m 与边数 n 之间的关系: 二次备课
板书设计 11.3.1 多边形在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.如果一个多边形由 n 条线段组成,那么这个多边形就叫做 n 边形.各个角都相等,各条边都相等的多边形叫做正多边形.n 边形的对角线条数 m 与边数 n 之间的关系:
作业设计与布置 作业类型 作业内容 试做时长
基础性作业 基本性作业(必做)
鼓励性作业(选择)
挑战性作业(选择)
拓展性作业
作业反馈记录
教学反思
备课组长审核签字 教研组长审核签字 年级部审核签字 党支部审核签字
时间 时间 时间 时间