人教九上培优练:第16课 圆的基本概念和性质(含解析)

文档属性

名称 人教九上培优练:第16课 圆的基本概念和性质(含解析)
格式 docx
文件大小 1.2MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-09-25 21:57:55

图片预览

文档简介

中小学教育资源及组卷应用平台
第16课 圆的基本概念和性质
题组A 基础过关练
1.圆有( )条对称轴.
A.0 B.1 C.2 D.无数
2.已知⊙O中最长的弦为10,则⊙O的半径是( )
A.10 B.20 C.5 D.15
3.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为( )
A.70° B.60° C.50° D.40°
4.下列四个命题:
①同圆或等圆中,相等的弦所对的弧相等;
②同圆或等圆中,相等的弧所对的弦相等;
③同圆或等圆中,相等的弦的弦心距相等;
④同圆或等圆中,相等的弧所对的圆心角相等.
真命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.如图,将命题“在同圆中,相等的弧所对的圆心角相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是( )
A.已知:在⊙O中,=.求证:∠AOB=∠COD,AD=BC.
B.已知:在⊙O中,=.求证:∠AOB=∠COD,AB=CD.
C.已知:在⊙O中,=,∠AOB=∠COD.求证:AD=BC.
D.已知:在⊙O中,=,∠AOB=∠COD.求证:AB=CD.
6.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是( )
①;②;③;④
A.1 B.2 C.3 D.4
7.如图,在⊙O中,,AB=3,则AC=_____.
8.一个圆的直径是4cm,周长是______cm.
9.如图,三角形是直角三角形,其中O为圆心.已知三角形面积是10cm2,求圆形面积.
10.(1)如果把人的头顶和脚底分别看做一个点,把地球赤道看做一个圆,那么身高1.5m的小明沿地球赤道环行一周,他的头顶比脚底多“走”了多少米?先猜一猜,再算一算,看看你的猜想如何.
(2)假设小明在某个半径为1km的星球上沿着其赤道环行一周,他的头顶比脚底又多“走”了多少米呢?在半径为10km的星球上情况又如何呢?
题组B 能力提升练
1.以下说法中:①任一多边形的外角中最多有三个是钝角②对顶角相等③三角形的一个外角等于两个内角的和④两直线被第三条直线所截,同位角相等⑤弧分为优弧和劣弧.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
2.如图,为半圆O的直径,,平分,交半圆于点D,交于点E,则的度数是( )
A. B. C. D.
3.如图,是的直径,弦,若,则的度数为( )
A.30° B.40° C.50° D.60°
4.如图是的半径,是的弦,且,若与互相垂直平分,则的长为( )
A. B. C. D.
5.如图,在中,,AB=10cm,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A.5cm B.6cm C.cm D.cm
6.如图所示,点M是⊙O上的任意一点,下列结论:
①以M为端点的弦只有一条;
②以M为端点的直径只有一条;
③以M为端点的弧只有一条.
则( )
A.①、②错误,③正确 B.②、③错误,①正确
C.①、③错误,②正确 D.①、②、③错误
7.如图,将△AOB绕点A顺时针旋转得到△ACD,使得点C,D都在圆上,则旋转角的度数为_____.
8.如图正方形的边长为1,分别以正方形的两个相对顶点为圆心,以1为半径画弧,则图中阴影部分的面积是______(用含有的式子表示).
9.如图,在⊙O中,D,E分别为半径OA,OB上的点,且AD=BE.点C为上一点,连接CD,CE,CO,∠AOC=∠BOC,求证:CD=CE.
10.如图,点A,B,C在⊙O上,按要求作图:
(1)过点A作⊙O的直径AD;
(2)过点B作⊙O的半径;
(3)过点C作⊙O的弦.
题组C 培优拔尖练
1.如果一个圆的半径由1厘米增加到2厘米.那么这个圆的周长增加了( )
A.3.14厘米 B.2厘米 C.8厘米 D.4厘米
2.下列语句中:
①两点确定一条直线;
②圆上任意两点、间的部分叫做圆弧;
③两点之间直线最短;
④三角形、四边形、五边形、六边形等都是多边形.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
3.计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.下面是同一个任务进行到不同阶段时进度条的示意图:若圆半径为2,当任务完成的百分比为m时,弦AB的长度记为d(m).下列描述正确的是( )
A.d(25%)=2
B.当m>50%时,d(m)>4
C.当m1<m2时,d(m1)<d(m2)
D.当m1+m2=100%时,d(m1)=d(m2)
4.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为S1,把圆周经过的所有小方格的圆外部分的面积之和记为S2,则的整数部分是( ).
A.0 B.1 C.2 D.3
5.如图,如图,的半径为2,圆心的坐标为,点是上的任意一点,,,与x轴分别交于A,B两点,若点A、点B关于原点O对称,则的最小值为( )
A.3 B.4 C.5 D.6
6.如图,在Rt△ABC中,∠ACB=90°, AC=3,以点C为圆心、CA为半径的圆与AB交于点D,若点D巧好为线段AB的中点,则AB的长度为( )
A. B.3 C. 6 D.9
7.如图,的半径为13,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于点M,N,作直线交于点C,则________.
8.如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为________
9.如图,BD=OD,∠AOC=114°,求∠AOD的度数.
10.在推导圆的面积计算公式时,是将一个圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的小纸片拼成一个近似的长方形,如图2所示.(注:本题中的π取3.14)
(1)若圆的半径为3cm,则拼成的近似长方形的周长比圆的周长多多少厘米?
(2)若拼成的近似长方形的周长为33.12cm,则圆的半径为多少?
(3)在(2)的条件下,求此圆的面积.
题组A 基础过关练
1.圆有(  )条对称轴.
A.0 B.1 C.2 D.无数
【答案】D
【详解】解:圆的对称轴是经过圆心的直线,经过一点的直线有无数条,
所以,圆有无数条对称轴.
故选:D.
2.已知⊙O中最长的弦为10,则⊙O的半径是( )
A.10 B.20 C.5 D.15
【答案】C
【详解】∵圆当中最长的弦是直径,
∴直径为10,
∴半径为.
故选:C
3.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为(  )
A.70° B.60° C.50° D.40°
【答案】D
【详解】解:∵AD∥OC,
∴∠AOC=∠DAO=70°,
又∵OD=OA,
∴∠ADO=∠DAO=70°,
∴∠AOD=180-70°-70°=40°.
故选:D.
4.下列四个命题:
①同圆或等圆中,相等的弦所对的弧相等;
②同圆或等圆中,相等的弧所对的弦相等;
③同圆或等圆中,相等的弦的弦心距相等;
④同圆或等圆中,相等的弧所对的圆心角相等.
真命题的个数有(  )
A.1个 B.2个 C.3个 D.4个
【答案】C
【详解】解:①同圆或等圆中,相等的弦所对的弧不一定相等,故原说法错误,是假命题,不符合题意;
②同圆或等圆中,相等的弧所对的弦相等,正确,是真命题,符合题意;
③同圆或等圆中,相等的弦的弦心距相等,正确,是真命题,符合题意;
④同圆或等圆中,相等的弧所对的圆心角相等,正确,是真命题,符合题意,
真命题有3个,
故选:C.
5.如图,将命题“在同圆中,相等的弧所对的圆心角相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是( )
A.已知:在⊙O中,=.求证:∠AOB=∠COD,AD=BC.
B.已知:在⊙O中,=.求证:∠AOB=∠COD,AB=CD.
C.已知:在⊙O中,=,∠AOB=∠COD.求证:AD=BC.
D.已知:在⊙O中,=,∠AOB=∠COD.求证:AB=CD.
【答案】B
【详解】A.所对的圆心角应为∠AOD,所对的圆心角应为∠BOC,相等的圆心角应为,故A选项错误;
B.所对的圆心角为∠AOB、所对的弦为AB,所对的圆心角为∠COD、所对的弦为CD,故B选项正确;
C.由题意可知,已知条件只有一个弧相等,而求证的结论有两个,故C选项错误;
D.由题意可知,已知条件只有一个弧相等,而求证的结论有两个,故D选项错误.
故选:B.
6.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是(   )
①;②;③;④
A.1 B.2 C.3 D.4
【答案】C
【详解】∵AB⊥CD,
∴,CE=DE,②正确,
∴∠BOC=2∠BAD=40°,③正确,
∴∠OCE=90° 40°=50°,④正确;
又,故①错误;
故选:C.
7.如图,在⊙O中,,AB=3,则AC=_____.
【答案】3
【详解】解:∵在⊙O中,,AB=3,
∴AC=AB=3.
故答案为:3.
8.一个圆的直径是4cm,周长是______cm.
【答案】
【详解】圆的直径是,
圆的周长是,
故答案为:.
9.如图,三角形是直角三角形,其中O为圆心.已知三角形面积是,求圆形面积.
【答案】
【详解】解:∵OA=OB
∴△AOB是等腰直角三角形
∵=10

∴圆的面积为
答:圆的面积是
10.(1)如果把人的头顶和脚底分别看做一个点,把地球赤道看做一个圆,那么身高的小明沿地球赤道环行一周,他的头顶比脚底多“走”了多少米?先猜一猜,再算一算,看看你的猜想如何.
(2)假设小明在某个半径为的星球上沿着其赤道环行一周,他的头顶比脚底又多“走”了多少米呢?在半径为的星球上情况又如何呢?
【答案】(1)他的头顶比脚底多“走”了3π米;(2)小明在半径为和的星球上环绕一周,头顶比脚底都多“走”了3π米.
【详解】解:(1)他的头顶比脚底多“走”了3π米.
设地球的半径是Rm,则人头绕地球环形时,人头经过的圆的半径是(R+1.5)m.地球的周长是2πRm,人头环形一周的周长是2π(R+1.5)m,
因而他的头顶比脚底多行的路程=2π(R+1.5) 2πR=3π(m).
(2)当小明在某个半径为1km的星球上沿着其赤道环行一周,他的头顶比脚底多“走”的路程=2π(1000+1.5) 2π 1000=3π(m),
当小明在某个半径为10km的星球上沿着其赤道环行一周,他的头顶比脚底多“走”的路程=2π(10000+1.5) 2π 10000=3π(m).
题组B 能力提升练
1.以下说法中:①任一多边形的外角中最多有三个是钝角②对顶角相等③三角形的一个外角等于两个内角的和④两直线被第三条直线所截,同位角相等⑤弧分为优弧和劣弧.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【详解】解:①多边形的外角和是360°,若外角中钝角的个数超过3个,则外角的和就超过360°,所以最多有3个外角,正确;
②对顶角相等,正确;
③三角形的一个外角等于不相邻两个内角的和,错误;
④两直线平行,同位角相等,错误;
⑤弧分为优弧、劣弧和半圆,错误.
∴正确的结论是①②.
故选:B.
2.如图,为半圆O的直径,,平分,交半圆于点D,交于点E,则的度数是( )
A. B. C. D.
【答案】B
【详解】解:连接OD
平分,
故选:B.
3.如图,是的直径,弦,若,则的度数为( )
A.30° B.40° C.50° D.60°
【答案】C
【详解】解:∵是的直径,
∴OA=OC,
∴∠C=∠A=25°,
∴∠AOD=∠C+∠A=50°,
∵OADE,
∴∠D=∠AOD=50°,
故选:C.
4.如图是的半径,是的弦,且,若与互相垂直平分,则的长为( )
A. B. C. D.
【答案】B
【详解】连接,设交于点.
与互相垂直平分,
,,
又,


故选:B.
5.如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于( )
A. B. C. D.
【答案】D
【详解】解:连接CD,如图所示:
∵点D是AB的中点,,,
∴,
∵,
∴,
在Rt△ACB中,由勾股定理可得;
故选D.
6.如图所示,点M是⊙O上的任意一点,下列结论:
①以M为端点的弦只有一条;
②以M为端点的直径只有一条;
③以M为端点的弧只有一条.
则(  )
A.①、②错误,③正确 B.②、③错误,①正确
C.①、③错误,②正确 D.①、②、③错误
【答案】C
【详解】解:以M为端点的弦有无数条,所以①错误;
以M为端点的直径只有一条,所以②正确;
以M为端点的弧有无数条,所以③错误.
故选:C.
7.如图,将△AOB绕点A顺时针旋转得到△ACD,使得点C,D都在圆上,则旋转角的度数为_____.
【答案】60°##60度
【详解】解:由题意可知,OA=AC,
∵OA=OC,
∴△AOC是等边三角形,
∴∠OAC=60°,
∴旋转角的度数为60°,
故答案为:60°.
8.如图正方形的边长为1,分别以正方形的两个相对顶点为圆心,以1为半径画弧,则图中阴影部分的面积是______(用含有的式子表示).
【答案】
【详解】解:如图所示
S阴影=-S正方形=-12=.
故答案为:.
9.如图,在⊙O中,D,E分别为半径OA,OB上的点,且AD=BE.点C为上一点,连接CD,CE,CO,∠AOC=∠BOC,求证:CD=CE.
【答案】见解析
【详解】证明:∵,
∴,即,
在和中,,
∴,
∴.
10.如图,点A,B,C在⊙O上,按要求作图:
(1)过点A作⊙O的直径AD;
(2)过点B作⊙O的半径;
(3)过点C作⊙O的弦.
【答案】(1)见解析
(2)见解析
(3)见解析
【详解】(1)如图所示,作射线,交于点,则线段即为的直径;
(2)如图所示,连接,线段即为所求;
(3)如图所示,连接,线段即为所求的一条弦(答案不唯一).
题组C 培优拔尖练
1.如果一个圆的半径由1厘米增加到2厘米.那么这个圆的周长增加了( )
A.3.14厘米 B.2厘米 C.8厘米 D.4厘米
【答案】B
【详解】解:(2-1)×2×π
=2π(厘米).
故选:B.
2.下列语句中:
①两点确定一条直线;
②圆上任意两点、间的部分叫做圆弧;
③两点之间直线最短;
④三角形、四边形、五边形、六边形等都是多边形.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【详解】解:①根据直线公理:过两点有且只有一条直线,故该项正确;
②根据圆弧的定义:圆上任意两点间的部分叫做圆弧,故该项正确;
③根据线段公理:两点之间,线段最短,故该项错误;
④根据多边形的定义:在平面内,有一些线段首尾顺次相接组成的封闭图形,故三角形、四边形、五边形、六边形等都是多边形,故该项正确.
综上可得:①、②、④正确.
故选:C
3.计算机处理任务时,经常会以圆形进度条的形式显示任务完成的百分比.下面是同一个任务进行到不同阶段时进度条的示意图:若圆半径为2,当任务完成的百分比为m时,弦AB的长度记为d(m).下列描述正确的是(  )
A.d(25%)=2
B.当m>50%时,d(m)>4
C.当m1<m2时,d(m1)<d(m2)
D.当m1+m2=100%时,d(m1)=d(m2)
【答案】D
【详解】根据已知,利用图象判断即可.
解:A、d(25%)=2>2,本选项不符合题意;
B、当m>50%时,0≤d(m)<4,本选项不符合题意;
C、当m1<m2时,d(m1)与d(m2)可能相等,可能不等,本选项不符合题意;
D、当m1+m2=100%时,d(m1)=d(m2),本选项符合题意;
故选:D.
4.在一个由8×8个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为S1,把圆周经过的所有小方格的圆外部分的面积之和记为S2,则的整数部分是( ).
A.0 B.1 C.2 D.3
【答案】B
【详解】解:由题意知:,

∴的整数部分是1
故选:B
5.如图,如图,的半径为2,圆心的坐标为,点是上的任意一点,,,与x轴分别交于A,B两点,若点A、点B关于原点O对称,则的最小值为( )
A.3 B.4 C.5 D.6
【答案】D
【详解】解:连接,




若要使取得最小值,则需取得最小值,
连接,交于点,当点位于位置时,取得最小值,
过点作轴于点,
则、,

又,


故选:D.
6.如图,在Rt△ABC中,∠ACB=90°, AC=3,以点C为圆心、CA为半径的圆与AB交于点D,若点D巧好为线段AB的中点,则AB的长度为( )
A. B.3 C. 6 D.9
【答案】C
【详解】连接CD,
∵以点C为圆心、CA为半径的圆与AB交于点D,AC=3,
∴,
又∵在Rt△ABC中,∠ACB=90°,D为线段AB的中点,
∴,
∴;
故选C.
7.如图,的半径为13,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于点M,N,作直线交于点C,则________.
【答案】12
【详解】连接OC、OB,如图,
根据作图可知,OC是线段AB的垂直平分线,
则有BC=AC=AB=10×=5,
又∵圆的半径OB=13,
∴在Rt△BOC中,利用勾股定理可得:,
故答案为:12.
8.如图,A,B,C是⊙O上的三个点,∠AOB=50°,∠B=55°,则∠A的度数为________
【答案】
【详解】解:∵,
∴,
∴,
∴,
又∵,
∴,
∴.
故答案为:
9.如图,BD=OD,∠AOC=114°,求∠AOD的度数.
【答案】28°.
【详解】解:设∠B=x,
∵BD=OD,
∴∠DOB=∠B=x,
∴∠ADO=∠DOB+∠B=2x,
∵OA=OD,
∴∠A=∠ADO=2x,
∵∠AOC=∠A+∠B,
∴2x+x=114°,解得x=38°,
∴∠AOD=180°﹣∠OAD﹣∠ADO=180°﹣4x=180°﹣4×38°=28°.
10.在推导圆的面积计算公式时,是将一个圆分成若干(偶数)等份,剪开后,用这些近似等腰三角形的小纸片拼成一个近似的长方形,如图2所示.(注:本题中的π取3.14)
(1)若圆的半径为3cm,则拼成的近似长方形的周长比圆的周长多多少厘米?
(2)若拼成的近似长方形的周长为33.12cm,则圆的半径为多少?
(3)在(2)的条件下,求此圆的面积.
【答案】(1)6cm;(2)4cm;(3)50.24(cm2).
【详解】解:(1)拼成的近似长方形的周长比圆的周长多3×2=6cm;
(2)设圆的半径为r,
由题意得,2πr+2r=33.12,
解得:r=4,
答:圆的半径为4cm;
(3)此圆的面积=3.14×42=50.24(cm2).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)