人教九上培优练:第20课 切线长定理(含解析)

文档属性

名称 人教九上培优练:第20课 切线长定理(含解析)
格式 docx
文件大小 1.3MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-09-25 22:18:32

图片预览

文档简介

中小学教育资源及组卷应用平台
第20课 切线长定理
题组A 基础过关练
1.如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,
PA=5,则弦AB的长是( )
A. B. C.5 D.5
2.下列直线是圆的切线的是( )
A.与圆有公共点的直线 B.到圆心的距离等于半径的直线
C.到圆心的距离大于半径的直线 D.到圆心的距离小于半径的直线
3.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为( )
A.128° B.126° C.122° D.120°
4.下列命题:①平 四边形是中 对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外 是三条边垂直平分线的交点;⑤三角形的内 是三条内角平分线的交点;其中正确的有( )
A.1个 B.2个 C.3个 D.4个
5.已知三角形的周长为12,面积为6,则该三角形内切圆的半径为( )
A.4 B.3 C.2 D.1
6.如图,AB、BC、CD、DA都是⊙O的切线.已知AD=3,BC=6,则AB+CD的值是( )
A.3 B.6 C.9 D.12
7.如图,PA、PB是⊙O的切线,若∠APO=25°,则∠BPA=_____.
8.如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为20cm,则PA长为__________.
9.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,
且CD=CB、连接DO并延长交CB的延长线于点E.
(1)判断直线CD与⊙O的位置关系,并证明;
(2)若BE=8,DE=16,求⊙O的半径.
10.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,AD=4cm.
(1)求⊙O的直径BE的长;
(2)计算△ABC的面积.
题组B 能力提升练
1.下列命题中:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③垂直于半径的直线是圆的切线;④E,F是∠AOB的两边OA,OB上的两点,则不同的E,O,F三点确定一个圆:其中正确的有( )
A.个 B.个 C.个 D.0个
2.如图,是的切线,是切点,若,则( )
A. B. C. D.都不对
3.如图:切于,切于,交于,下列结论中错误的是( )
A. B. C. D.是的中点
4.小明同学用一把直尺和一个直角三角板(有一个锐角为60°)测量一张光盘的直径,他把直尺、三角板和光盘按如图的方式放置,点A是60°角顶点,B是光盘与直尺的公共点,测得AB=3,则此光盘的直径为( )
A.3 B. C. D.
5.如图,在中,点为的内心,点在边上,且,若,,则的度数为( )
A.111° B.130° C.172° D.170°
6.如图,在△ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是( )
A. B.
C.一定经过△ABC的内心 D.AD一定经过△ABC的外心
7.如图,中,,它的周长为16.若与三边分别切于E,F,D点,则DF的长为____________
8.如图,若△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,
BC=13,CA=12,则阴影部分的周长是_____.
9.如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是AEF的中线,且AD=6,求AE的长.
10.已知,,分别与相切于,,三点,,.
(1)如图1,求的长;
(2)如图2,当,时,连接,,求,的长.
题组C 培优拔尖练
1.如图,AB是的直径,PA与相切于点A,交于点C.若,则的度数为( )
A. B. C. D.
2.如图,AB为的直径,延长AB到点P,过点P作的切线PC,PD,切点分别为C,D,连接CD交AP于点M,连接BD,AD.若,,则AD的长为( )
A. B. C.2 D.
3.如图,BC是⊙O的直径,点A是⊙O上的一点,点D是△ABC的内心,若BC=5,
AC=3,则BD的长度为( )
A.2 B.3 C. D.
4.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=8,则△PCD的周长为( )
A.8 B.12 C.16 D.20
5.如图,若等边△ABC的内切圆的半径是2,则△ABC的面积是( )
A. B. C. D.
6.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点C作CF∥AB,在CF上取一点E,使DE=DC,连接BE.对于下列结论:
①BD=DC;②△CAB∽△CDE;③=;④BE为⊙O的切线,
其中一定正确的是( )
A.①② B.①②③ C.①④ D.①②④
7.如图,为的直径,、为上的点,连接、、、,为延长线上一点,连接,且,.若的半径为,则点到的距离为________.
8.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,分别交PA,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于 _____.
9.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.
(1)求证:PB是⊙O的切线;
(2)求⊙O的半径;
(3)连接BE,求BE的长.
10.如图,PA、PB、CD是的切线,点A、B、E为切点.
(1)如果的周长为10,求PA的长;
(2)如果,
①求;
②连AE,BE,求.
题组A 基础过关练
1.如图,从⊙O外一点P引圆的两条切线PA,PB,切点分别是A,B,若∠APB=60°,PA=5,则弦AB的长是(  )
A. B. C.5 D.5
【答案】C
【详解】解:∵PA,PB为⊙O的切线,
∴PA=PB,
∵∠APB=60°,
∴△APB为等边三角形,
∴AB=PA=5.
故选:C.
2.下列直线是圆的切线的是( )
A.与圆有公共点的直线 B.到圆心的距离等于半径的直线
C.到圆心的距离大于半径的直线 D.到圆心的距离小于半径的直线
【答案】B
【详解】A、与圆只有一个交点的直线是圆的切线,故本选项错误;
B、到圆心距离等于圆的半径的直线是圆的切线,故本选项正确;
C、经过半径的外端且垂直于这条半径的直线是圆的切线,故本选项错误;
D、经过半径的外端且垂直于这条半径的直线是圆的切线,故本选项错误.
故选B.
3.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为( )
A.128° B.126° C.122° D.120°
【答案】C
【详解】在⊙O中,
∵∠CBD=32°,
∵∠CAD=32°,
∵点E是△ABC的内心,
∴∠BAC=64°,
∴∠EBC+∠ECB=(180°-64°)÷2=58°,
∴∠BEC=180°-58°=122°.
故选:C.
4.下列命题:①平 四边形是中 对称图形,也是轴对称图形;②直径是最长的弦,半径是最短的弦;③过切点的直线是圆的切线;④三角形的外 是三条边垂直平分线的交点;⑤三角形的内 是三条内角平分线的交点;其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【答案】B
【详解】解:①平 四边形是中 对称图形,也是轴对称图形,错误,平行四边形是中心对称图形,不是轴对称图形;②直径是最长的弦,正确,半径是最短的弦,错误,半径不是弦;③过切点的直线是圆的切线,错误;④三角形的外 是三条边垂直平分线的交点,正确;⑤三角形的内 是三条内角平分线的交点,正确.
故选:B.
5.已知三角形的周长为12,面积为6,则该三角形内切圆的半径为( )
A.4 B.3 C.2 D.1
【答案】D
6.如图,AB、BC、CD、DA都是⊙O的切线.已知AD=3,BC=6,则AB+CD的值是( )
A.3 B.6 C.9 D.12
【答案】C
【详解】解:∵AB、BC、CD、DA都是的切线,
∴可以假设切点分别为E、H、G、F,如图所示:
∴AE=AF,BE=BH,DF=DG,CG=CH,
∴AB+CD=AE+BE+DG+CG=AF+BH+DF+CH=AD+BC
∵AD=3,BC=6
∴AB+CD=3+6=9
故选C.

7.如图,PA、PB是⊙O的切线,若∠APO=25°,则∠BPA=_____.
【答案】50°
【详解】解:∵PA、PB是⊙O的切线,
∴∠BPO=∠APO=25°,
∴∠BPA=50°,
故答案为:50°.
8.如图,P是⊙O外一点,PA、PB分别和⊙O切于A、B,C是弧AB上任意一点,过C作⊙O的切线分别交PA、PB于D、E,若△PDE的周长为20cm,则PA长为__________.
【答案】10cm
【详解】解:根据切线长定理得:
AD=CD,CE=BE,PA=PB,
则△PDE的周长=
2PA=20,
PA=10.
故答案为:
9.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E.
(1)判断直线CD与⊙O的位置关系,并证明;
(2)若BE=8,DE=16,求⊙O的半径.
【答案】(1)相切,理由见解析;(2)⊙O的半径为6
【详解】解:(1)相切,理由如下,
如图,连接OC,
在△OCB与△OCD中,

∴△OCB≌△OCD(SSS),
∴∠ODC=∠OBC=90°,
∴OD⊥DC,
∴DC是⊙O的切线;
(2)设⊙O的半径为r,
在Rt△OBE中,∵OE2=EB2+OB2,
∴(16﹣r)2=r2+82,
∴r=6,
∴⊙O的半径为6.
10.如图,在△ABC中,已知∠ABC=90o,在AB上取一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,AD=4cm.
(1)求⊙O的直径BE的长;
(2)计算△ABC的面积.
【答案】(1)BE=6;(2) S△ABC=24..
【详解】(1)连接OD,
∴OD⊥AC
∴△ODA是直角三角形
设半径为r
∴AO=r+2

解之得:r=3
∴BE=6
(2)∵∠ABC=900
∴OB⊥BC
∴BC是⊙O的切线
∵CD切⊙O于D
∴CB=CD
令CB=x
∴AC=x+4, CB=x,AB=8

∴x=6.
∴S△ABC=24(cm2).
故答案为(1)BE=6;(2) S△ABC=24..
题组B 能力提升练
1.下列命题中:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③垂直于半径的直线是圆的切线;④E,F是∠AOB的两边OA,OB上的两点,则不同的E,O,F三点确定一个圆:其中正确的有( )
A.个 B.个 C.个 D.0个
【答案】D
【详解】解:①在同圆或等圆中,相等的圆心角所对的弧相等;故错误;
②平分弦(不是直径)的直径垂直于弦;故错误;
③垂直于半径且过半径的外端点的直线是圆的切线;故错误;
④E、F是∠AOB(∠AOB≠180°)的两边OA、OB上的两点,则E、O、F三点确定一个圆;故错误;
故选:D.
2.如图,是的切线,是切点,若,则( )
A. B. C. D.都不对
【答案】A
【详解】解:PA,PB是⊙O的切线,







故选:A.
3.如图:切于,切于,交于,下列结论中错误的是( )
A. B. C. D.是的中点
【答案】D
【详解】、是的切线,切点是、,
,,
选项A、B错误;
,,

选项C错误;
根据已知不能得出是的中点,
故选项D正确;
故选D.
4.小明同学用一把直尺和一个直角三角板(有一个锐角为60°)测量一张光盘的直径,他把直尺、三角板和光盘按如图的方式放置,点A是60°角顶点,B是光盘与直尺的公共点,测得AB=3,则此光盘的直径为( )
A.3 B. C. D.
【答案】D
【详解】如图,设光盘的圆心为,直角三角板与的切点为,连接,
是的切线,
,,
此光盘的直径为
故选D
5.如图,在中,点为的内心,点在边上,且,若,,则的度数为( )
A.111° B.130° C.172° D.170°
【答案】C
【详解】解:在中,,
BAC=180-42-58=80
点为的内心,
CAI=BAI==40
四边形AIDC的内角和180(4-2)=360,且
=360---CAI=360-90-40-58=172
故选C.
6.如图,在△ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是( )
A. B.
C.一定经过△ABC的内心 D.AD一定经过△ABC的外心
【答案】C
【详解】根据作图步骤得:AD是∠BAC的角平分线
A、在△ABD中,AD+BD>AB,故选项A错误,不符合题意;
B、由角平分线得,而不一定成立,选项B错误,不符合题意;
C、△ABC的内心是三条角平分线的交点,故选项C正确,符合题意;
D、△ABC的外心是三边中垂线的交点,故选项D错误,不符合题意;
故选:C.
7.如图,中,,它的周长为16.若与三边分别切于E,F,D点,则DF的长为____________
【答案】2
【详解】解:∵⊙O与BC,AC,AB三边分别切于E,F,D点,
∴AD=AF,BE=BD,CE=CF,
∵BC=BE+CE=6,
∴BD+CF=6,
∵AD=AF,∠A=60°,
∴△ADF是等边三角形,
∴AD=AF=DF,
∵AB+AC+BC=16,BC=6,
∴AB+AC=10,
∵BD+CF=6,
∴AD+AF=4,
∵AD=AF=DF,
∴DF=AF=AD=,
故答案为:2.
8.如图,若△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分的周长是 _____.
【答案】8
【详解】∵AB=5,BC=13,CA=12,
∴,
∴△ABC为直角三角形,∠A=90°,
∵AB、AC与⊙O分别相切于点E、F,
∴OF⊥AB,OE⊥AC,
∴四边形OFAE为矩形,
∵OE=OF
∴四边形OFAE为正方形,
设OE=r,
则AE=AF=r,
∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,
∴BD=BF=5﹣r,CD=CE=12﹣r,
∴5﹣r+12﹣r=13,
∴r=2,
∴阴影部分(即四边形AEOF)的面积是2×4=8.
故阴影部分的周长是:8.
9.如图,AC是⊙O的直径,弦BD交AC于点E,点F为BD延长线上一点,∠DAF=∠B.
(1)求证:AF是⊙O的切线;
(2)若⊙O的半径为5,AD是AEF的中线,且AD=6,求AE的长.
【答案】(1)见解析
(2)
【详解】(1)证明:∵AC是直径,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∵∠ACD=∠B,∠B=∠DAF,
∴∠DAF=∠ACD,
∴∠DAF+∠DAC=90°,
∴,
∵AC是直径,
∴AF是⊙O的切线;
(2)解:作于点H,
∵⊙O的半径为5,
∴AC=10,
∵∠AHD=∠ADC=90°,∠DAH=∠CAD,
∴△ADH~△ACD,
∴,
∴,
∵AD=6,
∴,
∵AD是△AEF的中线,∠EAF=90°,
∴AD=ED,

10.已知,,分别与相切于,,三点,,.
(Ⅰ)如图1,求的长;
(Ⅱ)如图2,当,时,连接,,求,的长.
【答案】(Ⅰ)4;(Ⅱ),.
【详解】解:(Ⅰ)∵AB,BC,CD都是圆O的切线,
∴BM=BA=1,CM=CD=3,
∴BC=BM+CM=4;
(Ⅱ)如图所示,连接OD,OM,OA,
∵BC,DC都是圆O的切线,
∴∠ODC=∠OMC=∠OMB=90°,CM=CD,
又∵OC=OC,
∴Rt△OCD≌Rt△OCM(HL),
∴∠OCD=∠OCM,
同理可得∠OBA=∠OBM,
∵∠DCB=60°,AB∥CD,
∴∠OCM=30°,∠ABM=120°
∴OC=2OM,∠OBM=60°,
∴,
∴,
∴.
题组C 培优拔尖练
1.如图,AB是的直径,PA与相切于点A,交于点C.若,则的度数为( )
A. B. C. D.
【答案】B
【详解】
如图,连接OC,
因为OB=OC,
所以∠OCB=∠OBC=70°,
所以∠BOC=180°-70°-70°=40°,
又因为,
所以∠AOP=∠B=70°,
∴∠POC=180°-∠AOP-∠BOC=70°,
所以在△PAO和△PCO中,

所以△PAO≌△PCO(SAS),
所以∠OCP=∠OAP
因为PA与相切于点A,
所以∠OCP=∠OAP=90°,
所以∠OPC=180°-∠POC-∠OCP=20°,
故选:B.
2.如图,AB为的直径,延长AB到点P,过点P作的切线PC,PD,切点分别为C,D,连接CD交AP于点M,连接BD,AD.若,,则AD的长为( )
A. B. C.2 D.
【答案】A
【详解】解:连接,如图所示,
∵PC,PD是的切线,





设的半径为

在中,,
解得,
在中,
∵是的切线,

在中,



整理得,

解得,或(舍去)


在中,,故A正确.
故选:A.
3.如图,BC是⊙O的直径,点A是⊙O上的一点,点D是△ABC的内心,若BC=5,AC=3,则BD的长度为(  )
A.2 B.3 C. D.
【答案】C
【详解】解: 如下图,过点D分别作DE⊥AB于E,DF ⊥BC于F, DH⊥AC于H, 连接AD, CD,
∵BC是⊙O的直径,
∴∠BAC= 90°,
∵BC=5,AC=3,
∴ ,
∵点D是△ABC的内心,
∴ DE= DF= DH,AE= АН,BE= BF,CF= CH,
设BE= x,则BF= x,AE=4- x,CF=5-x,CH=5-x,AН=4-x,
∵AC=3,
∴4-x+5-x=3,
解得:x=3
∴BE=3,
设DE= r,
∵S△ABC = S△ABD + S△BDC + S△ADC,
∴ ,
解得:r= 1,
∴ DE= 1,
在Rt△BDE中, ,
故选:C.
4.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=8,则△PCD的周长为( )
A.8 B.12 C.16 D.20
【答案】C
【详解】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,
∴PA=PB=6,AC=EC,BD=ED,
∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=8+8=16,
即△PCD的周长为16.
故选:C.
5.如图,若等边△ABC的内切圆的半径是2,则△ABC的面积是( )
A. B. C. D.
【答案】D
【详解】解:连接,,并延长交于点,
是等边的内切圆,
,,

由勾股定理得:,
同理,

是等边三角形,,,三点共线,


故选:D.
6.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点C作CF∥AB,在CF上取一点E,使DE=DC,连接BE.对于下列结论:
①BD=DC;②△CAB∽△CDE;③=;④BE为⊙O的切线,
其中一定正确的是(  )
A.①② B.①②③ C.①④ D.①②④
【答案】D
【详解】解:∵AB为直径,
∴∠ADB=90°,
∴AD⊥BC,
而AB=CA,
∴BD=DC,所以①正确;
∵AB=CA,
∴∠ABC=∠ACB,
而CD=ED,
∴∠DCE=∠DEC,
∵CF∥AB,
∴∠ABC=∠DCE,
∴∠ABC=∠ACB=∠DCE=∠DEC,
∴△CBA∽△CED,所以②正确;
∵△ABC不能确定为直角三角形,
∴∠ABC不能确定等于45°,
∴与不能确定相等,所以③不一定正确;
∵DB=DC=DE,
∴点E在以BC为直径的圆上,
∴∠BEC=90°,
∴CE⊥BE,
而CF∥AB,
∴AB⊥BE,
∴BE为⊙O的切线,所以④正确;
综上所述①②④正确,
故选: D.
7.如图,为的直径,、为上的点,连接、、、,为延长线上一点,连接,且,.若的半径为,则点到的距离为________.
【答案】##
【详解】解:连接OC,
∵AB是圆的直径,







∴,即OC⊥CD
∵的半径为

在Rt△OCD中,


过点A作AF⊥DC,交DC延长线于点F,过点C作CG⊥AD于点G,

∴,解得,
同理:


故答案为:
8.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,分别交PA,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于 _____.
【答案】
【详解】解:如图,连接OA,OB,OP,
∵PA,PB切⊙O于A,B两点,OA,OB是半径,
∴OA⊥PA,OB⊥PB,且OA=OB,
∴PO是∠APB的平分线,
∵∠APB=60°,
∴∠APO=30°,
∴OP=2OA=4,
在Rt△APO中,由勾股定理得AP=,
∵PA,PB切⊙O于A,B两点,
∴PA=PB=,
∵CD切⊙O于点E,
∴AC=CE,BD=DE,
∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=,
故答案为:.
9.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.
(1)求证:PB是⊙O的切线;
(2)求⊙O的半径;
(3)连接BE,求BE的长.
【答案】(1)见解析
(2)3
(3)
【详解】(1)证明:,

,,,


为的切线;
(2)解:在中,,,
根据勾股定理得:,
与都为的切线,


在中,设,则有,
根据勾股定理得:,
解得:,
则圆的半径为3.
(3)延长、相交于点,
与都为的切线,
平分,



又,

,,

在中,,

10.如图,PA、PB、CD是的切线,点A、B、E为切点.
(1)如果的周长为10,求PA的长;
(2)如果,
①求;
②连AE,BE,求.
【答案】(1)5
(2)①70°;②110°
【详解】(1)∵分别切于点

∴△的周长

(2)①
∵分别切于点
②连接OA,OB
∵PA,PB是切线,




21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)