中小学教育资源及组卷应用平台
专题19 解三角形大题综合
考点01 求面积的值及范围或最值
1.(2024·北京·高考真题)在中,内角的对边分别为,为钝角,,.
(1)求;
(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
【答案】(1);
(2)选择①无解;选择②和③△ABC面积均为.
【分析】(1)利用正弦定理即可求出答案;
(2)选择①,利用正弦定理得,结合(1)问答案即可排除;选择②,首先求出,再代入式子得,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;选择③,首先得到,再利用正弦定理得到,再利用两角和的正弦公式即可求出,最后利用三角形面积公式即可;
【详解】(1)由题意得,因为为钝角,
则,则,则,解得,
因为为钝角,则.
(2)选择①,则,因为,则为锐角,则,
此时,不合题意,舍弃;
选择②,因为为三角形内角,则,
则代入得,解得,
,
则.
选择③,则有,解得,
则由正弦定理得,即,解得,
因为为三角形内角,则,
则
,
则
2.(2023·全国甲卷·高考真题)记的内角的对边分别为,已知.
(1)求;
(2)若,求面积.
【答案】(1)
(2)
【分析】(1)根据余弦定理即可解出;
(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.
【详解】(1)因为,所以,解得:.
(2)由正弦定理可得
,
变形可得:,即,
而,所以,又,所以,
故的面积为.
3.(2023·全国乙卷·高考真题)在中,已知,,.
(1)求;
(2)若D为BC上一点,且,求的面积.
【答案】(1);
(2).
【分析】(1)首先由余弦定理求得边长的值为,然后由余弦定理可得,最后由同角三角函数基本关系可得;
(2)由题意可得,则,据此即可求得的面积.
【详解】(1)由余弦定理可得:
,
则,,
.
(2)由三角形面积公式可得,
则.
4.(2022·浙江·高考真题)在中,角A,B,C所对的边分别为a,b,c.已知.
(1)求的值;
(2)若,求的面积.
【答案】(1);
(2).
【分析】(1)先由平方关系求出,再根据正弦定理即可解出;
(2)根据余弦定理的推论以及可解出,即可由三角形面积公式求出面积.
【详解】(1)由于, ,则.因为,
由正弦定理知,则.
(2)因为,由余弦定理,得,
即,解得,而,,
所以的面积.
考点02 求边长、周长的值及范围或最值
1.(2024·全国新Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.
(1)求A.
(2)若,,求的周长.
【答案】(1)
(2)
【分析】(1)根据辅助角公式对条件进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;
(2)先根据正弦定理边角互化算出,然后根据正弦定理算出即可得出周长.
【详解】(1)方法一:常规方法(辅助角公式)
由可得,即,
由于,故,解得
方法二:常规方法(同角三角函数的基本关系)
由,又,消去得到:
,解得,
又,故
方法三:利用极值点求解
设,则,
显然时,,注意到,
,在开区间上取到最大值,于是必定是极值点,
即,即,
又,故
方法四:利用向量数量积公式(柯西不等式)
设,由题意,,
根据向量的数量积公式,,
则,此时,即同向共线,
根据向量共线条件,,
又,故
方法五:利用万能公式求解
设,根据万能公式,,
整理可得,,
解得,根据二倍角公式,,
又,故
(2)由题设条件和正弦定理
,
又,则,进而,得到,
于是,
,
由正弦定理可得,,即,
解得,
故的周长为
2.(2024·全国新Ⅰ卷·高考真题)记的内角A、B、C的对边分别为a,b,c,已知,
(1)求B;
(2)若的面积为,求c.
【答案】(1)
(2)
【分析】(1)由余弦定理、平方关系依次求出,最后结合已知得的值即可;
(2)首先求出,然后由正弦定理可将均用含有的式子表示,结合三角形面积公式即可列方程求解.
【详解】(1)由余弦定理有,对比已知,
可得,
因为,所以,
从而,
又因为,即,
注意到,
所以.
(2)由(1)可得,,,从而,,
而,
由正弦定理有,
从而,
由三角形面积公式可知,的面积可表示为
,
由已知的面积为,可得,
所以.
3.(2023·全国新Ⅱ卷·高考真题)记的内角的对边分别为,已知的面积为,为中点,且.
(1)若,求;
(2)若,求.
【答案】(1);
(2).
【分析】(1)方法1,利用三角形面积公式求出,再利用余弦定理求解作答;方法2,利用三角形面积公式求出,作出边上的高,利用直角三角形求解作答.
(2)方法1,利用余弦定理求出a,再利用三角形面积公式求出即可求解作答;方法2,利用向量运算律建立关系求出a,再利用三角形面积公式求出即可求解作答.
【详解】(1)方法1:在中,因为为中点,,,
则,解得,
在中,,由余弦定理得,
即,解得,则,
,
所以.
方法2:在中,因为为中点,,,
则,解得,
在中,由余弦定理得,
即,解得,有,则,
,过作于,于是,,
所以.
(2)方法1:在与中,由余弦定理得,
整理得,而,则,
又,解得,而,于是,
所以.
方法2:在中,因为为中点,则,又,
于是,即,解得,
又,解得,而,于是,
所以.
4.(2022·全国新Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.
(1)求的面积;
(2)若,求b.
【答案】(1)
(2)
【分析】(1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;
(2)由正弦定理得,即可求解.
【详解】(1)由题意得,则,
即,由余弦定理得,整理得,则,又,
则,,则;
(2)由正弦定理得:,则,则,.
5.(2022·全国乙卷·高考真题)记的内角的对边分别为,已知.
(1)证明:;
(2)若,求的周长.
【答案】(1)见解析
(2)14
【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;
(2)根据(1)的结论结合余弦定理求出,从而可求得,即可得解.
【详解】(1)证明:因为,
所以,
所以,
即,
所以;
(2)解:因为,
由(1)得,
由余弦定理可得,
则,
所以,
故,
所以,
所以的周长为.
6.(2022·北京·高考真题)在中,.
(1)求;
(2)若,且的面积为,求的周长.
【答案】(1)
(2)
【分析】(1)利用二倍角的正弦公式化简可得的值,结合角的取值范围可求得角的值;
(2)利用三角形的面积公式可求得的值,由余弦定理可求得的值,即可求得的周长.
【详解】(1)解:因为,则,由已知可得,
可得,因此,.
(2)解:由三角形的面积公式可得,解得.
由余弦定理可得,,
所以,的周长为.
7.(2022·全国新Ⅰ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.
(1)若,求B;
(2)求的最小值.
【答案】(1);
(2).
【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;
(2)由(1)知,,,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出.
【详解】(1)因为,即,
而,所以;
(2)由(1)知,,所以,
而,
所以,即有,所以
所以
.
当且仅当时取等号,所以的最小值为.
8.(2020·全国·高考真题)的内角A,B,C的对边分别为a,b,c.已知B=150°.
(1)若a=c,b=2,求的面积;
(2)若sinA+sinC=,求C.
【答案】(1);(2).
【分析】(1)已知角和边,结合关系,由余弦定理建立的方程,求解得出,利用面积公式,即可得出结论;
(2)方法一 :将代入已知等式,由两角差的正弦和辅助角公式,化简得出有关角的三角函数值,结合的范围,即可求解.
【详解】(1)由余弦定理可得,
的面积;
(2)[方法一]:多角换一角
,
,
,
.
[方法二]:正弦角化边
由正弦定理及得.故.
由,得.
又由余弦定理得,所以,解得.
所以.
【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.
9.(2020·全国·高考真题)中,sin2A-sin2B-sin2C=sinBsinC.
(1)求A;
(2)若BC=3,求周长的最大值.
【答案】(1);(2).
【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;
(2)方法一:利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.
【详解】(1)由正弦定理可得:,
,
,.
(2)[方法一]【最优解】:余弦+不等式
由余弦定理得:,
即.
(当且仅当时取等号),
,
解得:(当且仅当时取等号),
周长,周长的最大值为.
[方法二]:正弦化角(通性通法)
设,则,根据正弦定理可知,所以,当且仅当,即时,等号成立.此时周长的最大值为.
[方法三]:余弦与三角换元结合
在中,角A,B,C所对的边分别为a,b,c.由余弦定理得,即.令,得,易知当时,,
所以周长的最大值为.
【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;
方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.
方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.
方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.
考点03 求角和三角函数的值及范围或最值
1.(2024·天津·高考真题)在中,角所对的边分别为,已知.
(1)求;
(2)求;
(3)求的值.
【答案】(1)
(2)
(3)
【分析】(1),利用余弦定理即可得到方程,解出即可;
(2)法一:求出,再利用正弦定理即可;法二:利用余弦定理求出,则得到;
(3)法一:根据大边对大角确定为锐角,则得到,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.
【详解】(1)设,,则根据余弦定理得,
即,解得(负舍);
则.
(2)法一:因为为三角形内角,所以,
再根据正弦定理得,即,解得,
法二:由余弦定理得,
因为,则
(3)法一:因为,且,所以,
由(2)法一知,
因为,则,所以,
则,
.
法二:,
则,
因为为三角形内角,所以,
所以
2.(2023·天津·高考真题)在中,角所对的边分别是.已知.
(1)求的值;
(2)求的值;
(3)求的值.
【答案】(1)
(2)
(3)
【分析】(1)根据正弦定理即可解出;
(2)根据余弦定理即可解出;
(3)由正弦定理求出,再由平方关系求出,即可由两角差的正弦公式求出.
【详解】(1)由正弦定理可得,,即,解得:;
(2)由余弦定理可得,,即,
解得:或(舍去).
(3)由正弦定理可得,,即,解得:,而,
所以都为锐角,因此,,
.
3.(2022·天津·高考真题)在中,角A、B、C的对边分别为a,b,c.已知.
(1)求的值;
(2)求的值;
(3)求的值.
【答案】(1)
(2)
(3)
【分析】(1)根据余弦定理以及解方程组即可求出;
(2)由(1)可求出,再根据正弦定理即可解出;
(3)先根据二倍角公式求出,再根据两角差的正弦公式即可求出.
【详解】(1)因为,即,而,代入得,解得:.
(2)由(1)可求出,而,所以,又,所以.
(3)因为,所以,故,又, 所以,,而,所以,
故.
4.(2021·天津·高考真题)在,角所对的边分别为,已知,.
(I)求a的值;
(II)求的值;
(III)求的值.
【答案】(I);(II);(III)
【分析】(I)由正弦定理可得,即可求出;
(II)由余弦定理即可计算;
(III)利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.
【详解】(I)因为,由正弦定理可得,
,;
(II)由余弦定理可得;
(III),,
,,
所以.
5.(2021·全国新Ⅰ卷·高考真题)记是内角,,的对边分别为,,.已知,点在边上,.
(1)证明:;
(2)若,求.
【答案】(1)证明见解析;(2).
【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.
(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.
【详解】(1)设的外接圆半径为R,由正弦定理,
得,
因为,所以,即.
又因为,所以.
(2)[方法一]【最优解】:两次应用余弦定理
因为,如图,在中,,①
在中,.②
由①②得,整理得.
又因为,所以,解得或,
当时,(舍去).
当时,.
所以.
[方法二]:等面积法和三角形相似
如图,已知,则,
即,
而,即,
故有,从而.
由,即,即,即,
故,即,
又,所以,
则.
[方法三]:正弦定理、余弦定理相结合
由(1)知,再由得.
在中,由正弦定理得.
又,所以,化简得.
在中,由正弦定理知,又由,所以.
在中,由余弦定理,得.
故.
[方法四]:构造辅助线利用相似的性质
如图,作,交于点E,则.
由,得.
在中,.
在中.
因为,
所以,
整理得.
又因为,所以,
即或.
下同解法1.
[方法五]:平面向量基本定理
因为,所以.
以向量为基底,有.
所以,
即,
又因为,所以.③
由余弦定理得,
所以④
联立③④,得.
所以或.
下同解法1.
[方法六]:建系求解
以D为坐标原点,所在直线为x轴,过点D垂直于的直线为y轴,
长为单位长度建立直角坐标系,
如图所示,则.
由(1)知,,所以点B在以D为圆心,3为半径的圆上运动.
设,则.⑤
由知,,
即.⑥
联立⑤⑥解得或(舍去),,
代入⑥式得,
由余弦定理得.
【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;
方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;
方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;
方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;
方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;
方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.
6.(2020·天津·高考真题)在中,角所对的边分别为.已知 .
(Ⅰ)求角的大小;
(Ⅱ)求的值;
(Ⅲ)求的值.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【分析】(Ⅰ)直接利用余弦定理运算即可;
(Ⅱ)由(Ⅰ)及正弦定理即可得到答案;
(Ⅲ)先计算出进一步求出,再利用两角和的正弦公式计算即可.
【详解】(Ⅰ)在中,由及余弦定理得
,
又因为,所以;
(Ⅱ)在中,由, 及正弦定理,可得;
(Ⅲ)由知角为锐角,由,可得 ,
进而,
所以.
【点晴】本题主要考查正、余弦定理解三角形,以及三角恒等变换在解三角形中的应用,考查学生的数学运算能力,是一道容易题.
7.(2020·浙江·高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.
(I)求角B的大小;
(II)求cosA+cosB+cosC的取值范围.
【答案】(I);(II)
【分析】(I)方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B的大小;
(II)方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A的三角函数式,然后由三角形为锐角三角形确定角A的取值范围,最后结合三角函数的性质即可求得的取值范围.
【详解】(I)
[方法一]:余弦定理
由,得,即.
结合余弦定,
∴,
即,
即,
即,
即,
∵为锐角三角形,∴,
∴,
所以,
又B为的一个内角,故.
[方法二]【最优解】:正弦定理边化角
由,结合正弦定理可得:
为锐角三角形,故.
(II) [方法一]:余弦定理基本不等式
因为,并利用余弦定理整理得,
即.
结合,得.
由临界状态(不妨取)可知.
而为锐角三角形,所以.
由余弦定理得,
,代入化简得
故的取值范围是.
[方法二]【最优解】:恒等变换三角函数性质
结合(1)的结论有:
.
由可得:,,
则,.
即的取值范围是.
【整体点评】(I)的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II)的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.
8.(2020·江苏·高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知.
(1)求的值;
(2)在边BC上取一点D,使得,求的值.
【答案】(1);(2).
【分析】(1)方法一:利用余弦定理求得,利用正弦定理求得.
(2)方法一:根据的值,求得的值,由(1)求得的值,从而求得的值,进而求得的值.
【详解】(1)[方法一]:正余弦定理综合法
由余弦定理得,所以.
由正弦定理得.
[方法二]【最优解】:几何法
过点A作,垂足为E.在中,由,可得,又,所以.
在中,,因此.
(2)[方法一]:两角和的正弦公式法
由于,,所以.
由于,所以,所以.
所以
.
由于,所以.
所以.
[方法二]【最优解】:几何法+两角差的正切公式法
在(1)的方法二的图中,由,可得,从而.
又由(1)可得,所以.
[方法三]:几何法+正弦定理法
在(1)的方法二中可得.
在中,,
所以.
在中,由正弦定理可得,
由此可得.
[方法四]:构造直角三角形法
如图,作,垂足为E,作,垂足为点G.
在(1)的方法二中可得.
由,可得.
在中,.
由(1)知,所以在中,,从而.
在中,.
所以.
【整体点评】(1)方法一:使用余弦定理求得,然后使用正弦定理求得;方法二:抓住45°角的特点,作出辅助线,利用几何方法简单计算即得答案,运算尤其简洁,为最优解;(2)方法一:使用两角和的正弦公式求得的正弦值,进而求解;方法二:适当作出辅助线,利用两角差的正切公式求解,运算更为简洁,为最优解;方法三:在几何法的基础上,使用正弦定理求得的正弦值,进而得解;方法四:更多的使用几何的思维方式,直接作出含有的直角三角形,进而求解,也是很优美的方法.
考点04 求三角形的高、中线、角平分线及其他线段长
1.(2023·全国新Ⅰ卷·高考真题)已知在中,.
(1)求;
(2)设,求边上的高.
【答案】(1)
(2)6
【分析】(1)根据角的关系及两角和差正弦公式,化简即可得解;
(2)利用同角之间的三角函数基本关系及两角和的正弦公式求,再由正弦定理求出,根据等面积法求解即可.
【详解】(1),
,即,
又,
,
,
,
即,所以,
.
(2)由(1)知,,
由,
由正弦定理,,可得,
,
.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题19 解三角形大题综合
考点01 求面积的值及范围或最值
1.(2024·北京·高考真题)在中,内角的对边分别为,为钝角,,.
(1)求;
(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得存在,求的面积.
条件①:;条件②:;条件③:.
注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.
2.(2023·全国甲卷·高考真题)记的内角的对边分别为,已知.
(1)求;
(2)若,求面积.
3.(2023·全国乙卷·高考真题)在中,已知,,.
(1)求;
(2)若D为BC上一点,且,求的面积.
4.(2022·浙江·高考真题)在中,角A,B,C所对的边分别为a,b,c.已知.
(1)求的值;
(2)若,求的面积.
考点02 求边长、周长的值及范围或最值
1.(2024·全国新Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.
(1)求A.
(2)若,,求的周长.
2.(2024·全国新Ⅰ卷·高考真题)记的内角A、B、C的对边分别为a,b,c,已知,
(1)求B;
(2)若的面积为,求c.
3.(2023·全国新Ⅱ卷·高考真题)记的内角的对边分别为,已知的面积为,为中点,且.
(1)若,求;
(2)若,求.
4.(2022·全国新Ⅱ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知.
(1)求的面积;
(2)若,求b.
5.(2022·全国乙卷·高考真题)记的内角的对边分别为,已知.
(1)证明:;
(2)若,求的周长.
6.(2022·北京·高考真题)在中,.
(1)求;
(2)若,且的面积为,求的周长.
7.(2022·全国新Ⅰ卷·高考真题)记的内角A,B,C的对边分别为a,b,c,已知.
(1)若,求B;
(2)求的最小值.
8.(2020·全国·高考真题)的内角A,B,C的对边分别为a,b,c.已知B=150°.
(1)若a=c,b=2,求的面积;
(2)若sinA+sinC=,求C.
9.(2020·全国·高考真题)中,sin2A-sin2B-sin2C=sinBsinC.
(1)求A;
(2)若BC=3,求周长的最大值.
考点03 求角和三角函数的值及范围或最值
1.(2024·天津·高考真题)在中,角所对的边分别为,已知.
(1)求;
(2)求;
(3)求的值.
2.(2023·天津·高考真题)在中,角所对的边分别是.已知.
(1)求的值;
(2)求的值;
(3)求的值.
3.(2022·天津·高考真题)在中,角A、B、C的对边分别为a,b,c.已知.
(1)求的值;
(2)求的值;
(3)求的值.
4.(2021·天津·高考真题)在,角所对的边分别为,已知,.
(I)求a的值;
(II)求的值;
(III)求的值.
5.(2021·全国新Ⅰ卷·高考真题)记是内角,,的对边分别为,,.已知,点在边上,.
(1)证明:;
(2)若,求.
6.(2020·天津·高考真题)在中,角所对的边分别为.已知 .
(Ⅰ)求角的大小;
(Ⅱ)求的值;
(Ⅲ)求的值.
7.(2020·浙江·高考真题)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且.
(I)求角B的大小;
(II)求cosA+cosB+cosC的取值范围.
8.(2020·江苏·高考真题)在△ABC中,角A,B,C的对边分别为a,b,c,已知.
(1)求的值;
(2)在边BC上取一点D,使得,求的值.
考点04 求三角形的高、中线、角平分线及其他线段长
1.(2023·全国新Ⅰ卷·高考真题)已知在中,.
(1)求;
(2)设,求边上的高.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)