天天练14.2 2024-2025学年沪科版八年级数学上册(原卷+解析版)

文档属性

名称 天天练14.2 2024-2025学年沪科版八年级数学上册(原卷+解析版)
格式 zip
文件大小 868.1KB
资源类型 试卷
版本资源 沪科版
科目 数学
更新时间 2024-09-29 13:19:06

文档简介

天天练14.2 2024-2025学年沪科版八年级数学上册
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列说法错误的是( )
A.三边分别相等的两个三角形全等
B.三角分别相等的两个三角形全等
C.两边和它们的夹角分别相等的两个三角形全等
D.斜边和一条直角边分别相等的两个直角三角形全等
【答案】B
B、三角分别相等的两个三角形全等,此项说法错误;
C、两边和它们的夹角分别相等的两个三角形全等,此项说法正确;
D、斜边和一条直角边分别相等的两个直角三角形全等,此项说法正确;
故选:B.
【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.
2.已知的6个元素,则下列甲、乙、丙三个三角形中和全等的是( )

A.甲和乙 B.乙和丙 C.甲和丙 D.只有甲
【答案】C
【详解】解:甲图中,,
甲图与可利用“”证明全等;
丙图与可利用“”证明全等;
乙图无法证明与全等.
故选:C.
3.如图,的面积为,平分,于P,连接,则的面积为(  )

A. B. C. D.
【答案】D
【详解】解:如图,延长交于E,

∵平分,



在和中,



∴,,

∴,
故选:D.
4.如图,已知,,添加下列条件,能判定的是( )
A. B. C. D.
【答案】B
【详解】解:∵
∴,与答案A条件相同,故答案A不正确,
答案B符合三角形全等的判定SAS,故答案B正确,
答案C、D是边边角的情况,不能判定两个三角形全等,故答案C、D不正确.
故选B.
5.如图,下列条件中,不能证明的是( )
A. B.
C. D.
【答案】C
【详解】解:A. 可利用判定,故此选项不合题意;
B. 可利用判定,故此选项不合题意;
C. 不能判定,故此选项符合题意;
D. 可利用判定,故此选项不合题意.
故选:C.
6.如图,ABC中,BD平分∠ABC,AD垂直于BD,BCD的面积为10,ACD的面积为6,则ABC的面积是( )
A.20 B.18 C.16 D.15
【答案】A
【详解】解:延长AD、BC相交于E,如图所示:
∵BD平分∠ABC,AD垂直于BD,
∴∠ABD=∠EBD,∠ADB=∠EDB=90°,
在△ABD和△EBD中,
∠ABD=∠EBD,BD=BD,∠ADB=∠EDB=90°,
∴△ABD≌△EBD(ASA),
∴AD=ED,
∴S△ABD=S△EBD,S△CDE=S△ACD=6,
∵S△BCD=10,
∴S△ABD=S△EBD=S△BCD+S△CDE=10+6=16,
∴S△ABC=S△ABE-S△ACE=16×2-6×2=20,
故选:A.
7.如图,在平行四边形中,点是边的中点,与的延长线交于点.若,则下列结论不成立的是( )
A. B.
C. D.
8.如图,为的角平分线,且,为延长线上的一点,,过作,为垂足.下列结论:①;②;③;④.其中正确的是( )

A.①②③ B.①③④ C.①②④ D.①②③④
二、填空题
9.如图,点B、E、C、F在同一条直线上,ABDE,AB=DE,要得到△ABC≌△DEF,添加的一个条件可以是 .(写出一个即可)
10.如图,AC⊥BC于点C,DE⊥AC于点E,BC = AE,AB = AD,则∠BAD = °
11.如图,小明同学把两根等长的木条AC、BD的中点连在一起,做成一个测量某物品内槽宽的工具,此时CD的长等于内槽的宽AB,这种测量方法用到三角形全等的判定方法是 .
12.如图,已知AC平分∠DAB,CE⊥AB于点E,AB=AD+2BE,则下列结论:①AB+AD= 2AE;②∠DAB+∠DCB=180°;③CD=CB;④SACE﹣SBCE=SACD.其中正确的是 .
三、解答题
13.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使∠ADE=∠ABC,(保留作图痕迹,不写做法)
14.如图,树AB与树CD之间相距13m,小华从点B沿BC走向点C,行走一段时间后,他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走到点E的时间.
15.已知中,,直线l经过点A.如图,点D,E分别在直线l上,点B,C位于l的同一侧,若,求证:.
16.学校为开展数学实践活动,成立了以小明为首的户外测量小组,测量小组带有测量工具:绳子、拉尺、小红旗、测角器(可测量两个点分别到测量者连线之间的夹角大小).小明小组的任务是测量某池塘不能直接到达的两个端点、之间的距离.
(1)小明小组提出了测量方案:在池塘南面的空地上(如图),取一个可直接到达、的点,用绳子连接和,并利用绳子分别延长至、至,使用拉尺丈量、,确定、两个点后,最后用拉尺直接量出线段的长,则端点、之间的距离就是的长.你认为小明小组测量方案正确吗?请说明理由.
(2)你还有不同于小明小组的其他测量方法吗?请写出其中一个完整的测量方案(在备用图中画出简图,但不必说明理由).
17.△ABC为等腰直角三角形,AB=AC,△ADE为等腰直角三角形,AD=AE,点D在直线BC上,连接CE.
(1)判断:①CE、CD、BC之间的数量关系;②CE与BC所在直线之间的位置关系,并说明理由;
(2)若D在CB延长线上,(1)中的结论是否成立?若成立,请直接写出结论,若不成立,请说明理由;
(3)若D在BC延长线上,(1)中的结论是否成立?若成立,请直接写出结论,若不成立,请写出你发现的结论,并计算:当CE=10cm,CD=2cm时,BC的长.天天练14.2 2024-2025学年沪科版八年级数学上册
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列说法错误的是( )
A.三边分别相等的两个三角形全等
B.三角分别相等的两个三角形全等
C.两边和它们的夹角分别相等的两个三角形全等
D.斜边和一条直角边分别相等的两个直角三角形全等
【答案】B
B、三角分别相等的两个三角形全等,此项说法错误;
C、两边和它们的夹角分别相等的两个三角形全等,此项说法正确;
D、斜边和一条直角边分别相等的两个直角三角形全等,此项说法正确;
故选:B.
【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.
2.已知的6个元素,则下列甲、乙、丙三个三角形中和全等的是( )

A.甲和乙 B.乙和丙 C.甲和丙 D.只有甲
【答案】C
【详解】解:甲图中,,
甲图与可利用“”证明全等;
丙图与可利用“”证明全等;
乙图无法证明与全等.
故选:C.
3.如图,的面积为,平分,于P,连接,则的面积为(  )

A. B. C. D.
【答案】D
【详解】解:如图,延长交于E,

∵平分,



在和中,



∴,,

∴,
故选:D.
4.如图,已知,,添加下列条件,能判定的是( )
A. B. C. D.
【答案】B
【详解】解:∵
∴,与答案A条件相同,故答案A不正确,
答案B符合三角形全等的判定SAS,故答案B正确,
答案C、D是边边角的情况,不能判定两个三角形全等,故答案C、D不正确.
故选B.
5.如图,下列条件中,不能证明的是( )
A. B.
C. D.
【答案】C
【详解】解:A. 可利用判定,故此选项不合题意;
B. 可利用判定,故此选项不合题意;
C. 不能判定,故此选项符合题意;
D. 可利用判定,故此选项不合题意.
故选:C.
6.如图,ABC中,BD平分∠ABC,AD垂直于BD,BCD的面积为10,ACD的面积为6,则ABC的面积是( )
A.20 B.18 C.16 D.15
【答案】A
【详解】解:延长AD、BC相交于E,如图所示:
∵BD平分∠ABC,AD垂直于BD,
∴∠ABD=∠EBD,∠ADB=∠EDB=90°,
在△ABD和△EBD中,
∠ABD=∠EBD,BD=BD,∠ADB=∠EDB=90°,
∴△ABD≌△EBD(ASA),
∴AD=ED,
∴S△ABD=S△EBD,S△CDE=S△ACD=6,
∵S△BCD=10,
∴S△ABD=S△EBD=S△BCD+S△CDE=10+6=16,
∴S△ABC=S△ABE-S△ACE=16×2-6×2=20,
故选:A.
7.如图,在平行四边形中,点是边的中点,与的延长线交于点.若,则下列结论不成立的是( )
A. B.
C. D.
【答案】D
【详解】在平行四边形中,有AD=BC,∠D=∠B,,
∴∠F=∠DCE,
∵E是AD中点,
∴AE=DE,
在△AEF和△DEC中,
∴,
∴,故A项正确;
∵∠D=∠B,∠D=∠FCD,∠F=∠FCD,
∴∠F=∠B,
∴CF=BC=AD,故B项正确;
∵,
∴AF=CD,故C项正确;
D项,已经推出BC=CF,已知条件无法推出∠B=60°,即不能推出BF=CF,故D项不成立,
故选:D.
8.如图,为的角平分线,且,为延长线上的一点,,过作,为垂足.下列结论:①;②;③;④.其中正确的是( )

A.①②③ B.①③④ C.①②④ D.①②③④
【答案】D
【详解】解:为的角平分线,

在和中,

,①正确;





,②正确,





,③正确;
过作,交的延长线于点,
, 平分,

在和中,



在和中,



,④正确;
故选:D.
二、填空题
9.如图,点B、E、C、F在同一条直线上,ABDE,AB=DE,要得到△ABC≌△DEF,添加的一个条件可以是 .(写出一个即可)
【答案】答案不唯一,如BC=EF、BE=CF
【详解】解:∵ABDE,
∴∠B=∠DEF,
∵AB=DE,
∴添加BC=EF,用SAS判定△ABC≌△DEF;
添加BE=CF,可得BC=EF,用SAS判定△ABC≌△DEF.
故答案为:答案不唯一,如BC=EF、BE=CF.
10.如图,AC⊥BC于点C,DE⊥AC于点E,BC = AE,AB = AD,则∠BAD = °
【答案】90
【详解】解:∵AC⊥BC于点C,DE⊥AC于点E,∴∠C=∠AED=90°.在Rt△ABC和Rt△AED中,∵,∴Rt△ABC≌Rt△AED(HL),∴∠B=∠CAD.
∵∠C=90°,∴∠B+∠BAC=90°,∴∠BAD=∠BAC+∠CAD=∠BAC+∠B=90°.
故答案为90.
11.如图,小明同学把两根等长的木条AC、BD的中点连在一起,做成一个测量某物品内槽宽的工具,此时CD的长等于内槽的宽AB,这种测量方法用到三角形全等的判定方法是 .
【答案】SAS.
【详解】∵木条AC、BD的中点连在一起,
∴AO=CO,DO=BO,
在△DCO和△BAO中,

∴△DCO≌△BAO(SAS),
∴AB=CD.
故答案为SAS.
12.如图,已知AC平分∠DAB,CE⊥AB于点E,AB=AD+2BE,则下列结论:①AB+AD= 2AE;②∠DAB+∠DCB=180°;③CD=CB;④SACE﹣SBCE=SACD.其中正确的是 .
【答案】①②③④
【详解】
①在AE取点F,使EF=BE,连接CF.
∵AB=AD+2BE=AF+EF+BE,EF=BE,
∴AB=AD+2BE=AF+2BE,
∴AD=AF,
∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,
∴AB+AD= 2AE,故①正确;
②在△ACD与△ACF中,
∵AD=AF,∠DAC=∠FAC,AC=AC,
∴△ACD≌△ACF,
∴∠ADC=∠AFC.
∵CE垂直平分BF,
∴CF=CB,
∴∠CFB=∠B.
又∵∠AFC+∠CFB=180°,
∴∠ADC+∠B=180°,
∴∠DAB+∠DCB=180°故②正确;
③由②知,△ACD≌△ACF,
∴CD=CF,
又∵CF=CB,
∴CD=CB,故③正确;
④易证△CEF≌△CEB,
∴S△ACE﹣S△BCE=S△ACE﹣S△FCE=S△ACF,
又∵△ACD≌△ACF,
∴S△ACF=S△ADC,
∴S△ACE﹣S△BCE=S△ADC,
故④正确.
综上所述,正确的结论是①②③④.
故答案为:①②③④.
三、解答题
13.如图,已知锐角△ABC,点D是AB边上的一定点,请用尺规在AC边上求作一点E,使∠ADE=∠ABC,(保留作图痕迹,不写做法)
【答案】见解析
【详解】解:如图所示:
通过这个方法作图,可以证明,就可以得到.
14.如图,树AB与树CD之间相距13m,小华从点B沿BC走向点C,行走一段时间后,他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走到点E的时间.
【答案】.
【详解】解:由题意得:,


在和中,,



则小华行走到点的时间为,
答:小华行走到点的时间为.
15.已知中,,直线l经过点A.如图,点D,E分别在直线l上,点B,C位于l的同一侧,若,求证:.
【答案】见解析
【详解】证明:∵,
∴,
∵,,
∴,
∴,
在和中,

∴,
∴.
16.学校为开展数学实践活动,成立了以小明为首的户外测量小组,测量小组带有测量工具:绳子、拉尺、小红旗、测角器(可测量两个点分别到测量者连线之间的夹角大小).小明小组的任务是测量某池塘不能直接到达的两个端点、之间的距离.
(1)小明小组提出了测量方案:在池塘南面的空地上(如图),取一个可直接到达、的点,用绳子连接和,并利用绳子分别延长至、至,使用拉尺丈量、,确定、两个点后,最后用拉尺直接量出线段的长,则端点、之间的距离就是的长.你认为小明小组测量方案正确吗?请说明理由.
(2)你还有不同于小明小组的其他测量方法吗?请写出其中一个完整的测量方案(在备用图中画出简图,但不必说明理由).
【答案】(1)正确;理由见解析;
(2)有,方案见解析.
【详解】(1)解:小明小组测量方案正确,理由如下:
连接,如图所示:
在和中,

∴,
∴,
∴端点、之间的距离就是的长;
(2)解:有其他方案,测量方案如下:
先过点作的垂线,再在上取,两点,使,接着过点作的垂线,交的延长线于点,则测出的长即为,的距离,如图所示:
∴,
在和中,

∴,
∴,
∴端点、之间的距离就是的长.
17.△ABC为等腰直角三角形,AB=AC,△ADE为等腰直角三角形,AD=AE,点D在直线BC上,连接CE.
(1)判断:①CE、CD、BC之间的数量关系;②CE与BC所在直线之间的位置关系,并说明理由;
(2)若D在CB延长线上,(1)中的结论是否成立?若成立,请直接写出结论,若不成立,请说明理由;
(3)若D在BC延长线上,(1)中的结论是否成立?若成立,请直接写出结论,若不成立,请写出你发现的结论,并计算:当CE=10cm,CD=2cm时,BC的长.
【答案】(1)①BC=CE+CD;②BC⊥CE,理由见解析;(2)CE⊥BC成立;BC=CD+CE不成立,结论:CD=CE+BC,理由见解析;(3)CE⊥BC成立;BC=CD+CE不成立,结论:CE=BC+CD, BC=8cm.
【详解】(1)①BC=CE+CD;②BC⊥CE,
理由如下:∵△ABC和△ADE是等腰三角形,AB=AC AD=AE,
∵∠BAC=∠DAE=90°,∠ABC=∠BCA=45°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠CAE,
在△DAB与△EAC中,

∴△DAB≌△EAC(SAS),
∴BD=CE,∠B=∠ACE=45°,
∵BC=BD+CD,
∴BC=CE+CD,
∵∠BCE=∠ACB+∠ACE=90°,∠ABC=∠BCA=45°,
∴BC⊥CF;
(2)CE⊥BC成立;BC=CD+CE不成立,结论:CD=CE+BC,
理由如下:∵△ABC和△ADE是等腰三角形,AB=AC AD=AE,
∵∠BAC=∠DAE=90°,∠ABC=∠BCA=45°,
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠BAD=∠CAE,
在△DAB与△EAC中,

∴△DAB≌△EAC(SAS),
∴BD=CE,∠ABD=∠ACE,
∵DC=BD+BC,
∴CD=CE+BC,
∵∠ABD=∠ACE=180°-∠ABC=180°-45°=135°,
∴∠BCE=∠ACE-∠ACB=135°-450=90°,
∴BC⊥CE;
(3)CE⊥BC成立;BC=CD+CE不成立,结论:CE=BC+CD,
同(1)可以得到△DAB≌△EAC,
∴BD=CE,∠ABD=∠ACE,
∴CE=BD=BC+CD,
∵CE=BC+CD,
∴BC=CE-CD=10-2=8(cm).
试卷第1页,共3页
试卷第1页,共3页