2024-2025学年河北省石家庄四十四中九年级(上)开学数学试卷
一、选择题:本题共15小题,每小题3分,共45分。在每小题给出的选项中,只有一项是符合题目要求的。
1.为了了解年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了名学生的数学成绩.下列说法正确的是( )
A. 年昆明市九年级学生是总体 B. 每一名九年级学生是个体
C. 名九年级学生是总体的一个样本 D. 样本容量是
2.函数的自变量的取值范围是( )
A. B. C. 且 D.
3.已知是关于的一元二次方程的一个解,则的值为( )
A. B. C. D.
4.如图,已知直线,若,,,则的长为( )
A.
B.
C.
D.
5.一次函数,经过,,则与的值为( )
A. B. C. D.
6.计算的值为( )
A. B. C. D.
7.如图,将绕边的中点顺时针旋转,嘉淇发现,旋转后的与构成平行四边形,推理如下:小明为保证嘉淇的推理更严谨,想在方框中“,”和“四边形”之间作补充,下列正确的是( )
点,分别转到了点,处,而点转到了点处,
四边形是平行四边形
A. 嘉淇推理严谨,不必补充 B. 应补充:且
C. 应补充:且 D. 应补充:且
8.某超市一月份的营业额为万元,三月份时因新冠疫情下降到万元,若平均每月下降率为,则由题意列方程应为( )
A. B.
C. D.
9.如图,有一张四边形纸片,,将它沿折叠,使点落在边上的点处,点落在点处,若,则的度数为( )
A.
B.
C.
D.
10.已知正多边形的一个内角等于一个外角的倍,那么这个正多边形的边数为( )
A. B. C. D.
11.反比例函数中常数为( )
A. B. C. D.
12.若关于的一元二次方程有实数根,则的取值范围为( )
A. 且 B. 且 C. D.
13.已知方程的两根恰好是一个直角三角形的两条直角边的长,则这个直角三角形的外接圆的直径为( )
A. B. C. D.
14.如图,的直径,弦,点在上,则的度数是( )
A. B.
C. D.
15.将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上.点、的读数分别为、,则的大小为( )
A. B. C. D.
二、解答题:本题共5小题,共40分。解答应写出文字说明,证明过程或演算步骤。
16.本小题分
解方程:
;
.
17.本小题分
某校为了调研初二年级学生“立定跳远”的实际水平,学校随机抽取了若干名学生进行测试,整理样本数据,得到下列统计图.
根据以上信息,回答下列问题:
学校抽取的学生总人数为______;
补全条形统计图;
扇形统计图中“不合格”部分所对扇形的圆心角度数为______;
若该校初二年级共有名学生,请估计该校初二年级学生立定跳远达到合格及合格以上的人数是多少?
18.本小题分
表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.
求直线的解析式;
请在图上画出直线不要求列表计算,并求直线被直线和轴所截线段的长;
设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值.
19.本小题分
直播购物逐渐走进了人们的生活某电商在抖音上对一款成本价为元的小商品进行直播销售如果按每件元销售,每天可卖出件通过市场调查发现,每件小商品售价每降低元,日销售量增加件.
若每件售价为元,则日销量是______件.
若日利润保持不变,商家想尽快销售完该款商品,每件售价应定为多少元?
小明的线下实体商店也销售同款小商品,标价为每件元为提高市场竞争力,促进线下销售,小明决定对该商品实行打折销售,使其销售价格不超过中的售价,则该商品至少需打几折销售?
20.本小题分
已知:如图,在矩形中,,在上取一点,,点是边上的一个动点,以为一边作菱形,使点落在边上,点落在矩形内或其边上.若,的面积为.
当四边形是正方形时,求的值;
当四边形是菱形时,求与的函数关系式;
当______时,的面积最大:当______时,的面积最小;
在的面积由最大变为最小的过程中,请直接写出点运动的路线长:______.
参考答案
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.解:
,
,
解得,;
,
,
或,
解得,.
17.人;
合格人数为人,
所以合格中的男生人数为人,
补全条形统计图为:
;
人,
估计该校初二年级学生立定跳远达到合格及合格以上的人数是人.
18.解:直线:中,当时,;当时,,
,解得,
直线的解析式为;
直线的解析式为;
如图,解得,
两直线的交点为,
直线:与轴的交点为,
直线被直线和轴所截线段的长为:;
把代入得,,解得;
把代入得,,解得;
当时,,
当时,,
当时,,
直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,则的值为或或.
19.解:;
设每件售价应定为元,则每件的销售利润为元,日销售量为件,
依题意得:,
整理得:,
解得:,,
又商家想尽快销售完该款商品,
.
答:每件售价应定为元.
设该商品需打折销售,
依题意得:,
解得:
答:该商品至少需打折销售.
20.解:如图中,
四边形是正方形,
,,
,,
,
≌,
,
,
,
.
如图中,
如图,连接,作于,则,
四边形是菱形,
,,
,
矩形中,,
,
,即,
≌,
,
,,
与的函数关系式;
如图中,当点与重合时,的值最小,的面积最大,
在中,,
的最大值.
如图中,当点在上时,的值最大,的面积最小,
此时易证,
,
,
,
的最小值为.
.
第1页,共1页