专题4.33 图形的相似中考压轴题分类专题(知识梳理与题型分类讲解)
第一部分【训练中考压轴题意义】
了解中考命题趋势和知识重难点 :通过训练历年中考数学真题,学生可以快速了解中考数学的命题趋势、试题分布以及知识重难点,从而对自己的知识储备进行全方位的查漏补缺
提高解题速度和精确度 :通过严格控制做题时间,用中考的时间要求自己,可以更加客观地训练解题速度和精确度,帮助学生适应考试节奏。
认识中考题型和命题风格 :中考真题令学生认识到中考的题型、命题风格、各知识版块分值分布,考查的重点及难易程度,对学生的帮助是最大的。
检验复习方向和效果 :真题成为检验复习方向以及复习效果的得力工具,通过定期模拟考试,学生可以了解自己的不足,进而调整复习策略。
提高应试能力 :通过反复做真题,学生能够适应考试的紧张氛围,掌握答题技巧,了解考点要求,提高解题能力和应变能力。
权威性和准确性 :真题的权威性和准确性远高于模拟题,因为它们来自于同一个命题组,考察点、风格以及难度等都很接近,通过对真题进行分析研究,可以总结出命题的规律。
综合性 :中考真题是命题组成员辛苦劳动的结晶,含金量高,出的题目在保证基础得分的同时,还具有一定的选拔作用,有助于提高学生的综合解题能力。
综上所述,训练数学中考真题对于提高学生的数学成绩和应试能力具有不可替代的作用,是备考过程中不可或缺的一部分。
第二部分【题型展示与方法点拨】
题型目录
【题型1】图形的相似与折叠问题
【题型2】图形的相似与旋转问题
【题型3】图形的相似与平移问题
【题型4】图形的相似与探究线段数量关系问题
【题型5】图形的相似与活动(问题、情景)探究问题
【题型6】图形的相似与作图问题
【题型7】图形的相似与问题的类比、拓展、延伸问题
【题型8】图形的相似与其他综合问题
【题型1】图形的相似与折叠问题
【例1】(2023·山东枣庄·中考真题)问题情境:如图1,在中,,是边上的中线.如图2,将的两个顶点B,C分别沿折叠后均与点D重合,折痕分别交于点E,G,F,H.
猜想证明:
(1)如图2,试判断四边形的形状,并说明理由.
问题解决;
(2)如图3,将图2中左侧折叠的三角形展开后,重新沿折叠,使得顶点B与点H重合,折痕分别交于点M,N,的对应线段交于点K,求四边形的面积.
【变式1】(2020·江苏徐州·中考真题)我们知道:如图①,点把线段分成两部分,如果.那么称点为线段的黄金分割点.它们的比值为.
(1)在图①中,若,则的长为_____;
(2)如图②,用边长为的正方形纸片进行如下操作:对折正方形得折痕,连接,将折叠到上,点对应点,得折痕.试说明是的黄金分割点;
(3)如图③,小明进一步探究:在边长为的正方形的边上任取点,连接,作,交于点,延长、交于点.他发现当与满足某种关系时、恰好分别是、的黄金分割点.请猜想小明的发现,并说明理由.
【变式2】(2024·辽宁·中考真题)如图,在中,,.将线段绕点顺时针旋转得到线段,过点作,垂足为.
图1 图2 图3
(1)如图1,求证:;
(2)如图2,的平分线与的延长线相交于点,连接,的延长线与的延长线相交于点,猜想与的数量关系,并加以证明;
(3)如图3,在(2)的条件下,将沿折叠,在变化过程中,当点落在点的位置时,连接.
①求证:点是的中点;
②若,求的面积.
【题型2】图形的相似与旋转问题
【例2】(2024·山东东营·中考真题)在中,,,.
(1)问题发现
如图1,将绕点按逆时针方向旋转得到,连接,,线段与的数量关系是______,与的位置关系是______;
(2)类比探究
将绕点按逆时针方向旋转任意角度得到,连接,,线段与的数量关系、位置关系与(1)中结论是否一致?若交于点N,请结合图2说明理由;
(3)迁移应用
如图3,将绕点旋转一定角度得到,当点落到边上时,连接,求线段的长.
【变式1】(2024·广西·中考真题)如图1,中,,.的垂直平分线分别交,于点M,O,平分.
(1)求证:;
(2)如图2,将绕点O逆时针旋转得到,旋转角为.连接,
①求面积的最大值及此时旋转角的度数,并说明理由;
②当是直角三角形时,请直接写出旋转角的度数.
【变式2】(2023·内蒙古赤峰·中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得.
【探究一】如图②,把绕点C逆时针旋转得到,同时得到点在直线上.求证:;
【探究二】在图②中,连接,分别交,于点,.求证:;
【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,.连接交于点,求的值.
【题型3】图形的相似与平移问题
【例3】(2022·辽宁沈阳·中考真题)如图,在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点,与直线OC交于点.
(1)求直线AB的函数表达式;
(2)过点C作轴于点D,将沿射线CB平移得到的三角形记为,点A,C,D的对应点分别为,,,若与重叠部分的面积为S,平移的距离,当点与点B重合时停止运动.
①若直线交直线OC于点E,则线段的长为________(用含有m的代数式表示);
②当时,S与m的关系式为________;
③当时,m的值为________.
【变式1】(2022·广西贵港·中考真题)已知:点C,D均在直线l的上方,与都是直线l的垂线段,且在的右侧,,与相交于点O.
(1)如图1,若连接,则的形状为______,的值为______;
(2)若将沿直线l平移,并以为一边在直线l的上方作等边.
①如图2,当与重合时,连接,若,求的长;
②如图3,当时,连接并延长交直线l于点F,连接.求证:.
【变式2】(2021·山东淄博·中考真题)已知:在正方形的边上任取一点,连接,一条与垂直的直线(垂足为点)沿方向,从点开始向下平移,交边于点.
(1)当直线经过正方形的顶点时,如图1所示.求证:;
(2)当直线经过的中点时,与对角线交于点,连接,如图2所示.求的度数;
(3)直线继续向下平移,当点恰好落在对角线上时,交边于点,如图3所示.设,求与之间的关系式.
【题型4】图形的相似与探究线段数量关系问题
【例4】(2024·四川·中考真题)如图,在四边形中,,连接,过点作,垂足为,交于点,.
(1)求证:;
(2)若.
①请判断线段,的数量关系,并证明你的结论;
②若,,求的长.
【变式1】(2024·内蒙古包头·中考真题)如图,在中,为锐角,点在边上,连接,且.
(1)如图1,若是边的中点,连接,对角线分别与相交于点.
①求证:是的中点;
②求;
(2)如图2,的延长线与的延长线相交于点,连接的延长线与相交于点.试探究线段与线段之间的数量关系,并证明你的结论.
【变式2】(2024·湖北·中考真题)在矩形中,点E,F分别在边,上,将矩形沿折叠,使点A的对应点P落在边上,点B的对应点为点G,交于点H.
(1)如图1,求证:;
(2)如图2,当P为的中点,,时,求的长;
(3)如图3,连接,当P,H分别为,的中点时,探究与的数量关系,并说明理由.
【题型5】图形的相似与活动(问题、情景)探究问题
【例5】(2024·四川广元·中考真题)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
【变式1】(2024·贵州·中考真题)综合与探究:如图,,点P在的平分线上,于点A.
(1)【操作判断】
如图①,过点P作于点C,根据题意在图①中画出,图中的度数为______度;
(2)【问题探究】
如图②,点M在线段上,连接,过点P作交射线于点N,求证:;
(3)【拓展延伸】
点M在射线上,连接,过点P作交射线于点N,射线与射线相交于点F,若,求的值.
【变式2】(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:
【问题情境】
如图1,在中,,,点D、E在边上,且,,,求的长.
解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,
,,,
∴___①___.
∴.
又∵,
∴在中,___②___.
∵,,
∴___③___.
【问题解决】
上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.
刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.
【知识迁移】
如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.
【拓展应用】
如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).
【问题再探】
如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.
【题型6】图形的相似与作图问题
【例6】(2024·广东深圳·中考真题)垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.
(1)如图1所示,四边形为“垂中平行四边形”,,,则________;________;
(2)如图2,若四边形为“垂中平行四边形”,且,猜想与的关系,并说明理由;
(3)①如图3所示,在中,,,交于点,请画出以为边的垂中平行四边形,要求:点在垂中平行四边形的一条边上(温馨提示:不限作图工具);
②若关于直线对称得到,连接,作射线交①中所画平行四边形的边于点,连接,请直接写出的值.
【变式1】(2024·江苏镇江·中考真题)主题学习:仅用一把无刻度的直尺作图
【阅读理解】
任务:如图1,点D、E分别在的边、上,,仅用一把无刻度的直尺作、的中点.
操作:如图2,连接、交于点P,连接交于点M,延长交于点N,则M、N分别为、的中点.
理由:由可得及,所以,.所以,.同理,由及,可得,.所以.所以,则,,即M、N分别为、的中点.
【实践操作】
请仅用一把无刻度的直尺完成下列作图,要求:不写作法,保留作图痕迹.
(1)如图3,,点E、F在直线上.
①作线段的中点;
②在①中作图的基础上,在直线上位于点F的右侧作一点P,使得;
(2)小明发现,如果重复上面的过程,就可以作出长度是已知线段长度的3倍、4倍、…k倍(k为正整数)的线段.如图4,,已知点、在上,他利用上述方法作出了.点E、F在直线上,请在图4中作出线段的三等分点;
【探索发现】
请仅用一把无刻度的直尺完成作图,要求:不写作法,保留作图痕迹.
(3)如图5,是的中位线.请在线段上作出一点Q,使得(要求用两种方法).
【变式2】(2024·江苏盐城·中考真题)如图1,E、F、G、H分别是平行四边形各边的中点,连接交于点M,连接AG、CH交于点N,将四边形称为平行四边形的“中顶点四边形”.
(1)求证:中顶点四边形为平行四边形;
(2)①如图2,连接交于点O,可得M、N两点都在上,当平行四边形满足________时,中顶点四边形是菱形;
②如图3,已知矩形为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)
【题型7】图形的相似与问题的类比、拓展、延伸问题
【例7】(2024·四川达州·中考真题)在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.
(1)四边形是菱形,
,,.
.
又,,
______+______.
化简整理得______.
【类比探究】
(2)如图2.若四边形是平行四边形,请说明边长与对角线的数量关系.
【拓展应用】
(3)如图3,四边形为平行四边形,对角线,相交于点,点为的中点,点为的中点,连接,若,,,直接写出的长度.
【变式1】(2024·湖北武汉·中考真题)问题背景:如图(1),在矩形中,点,分别是,的中点,连接,,求证:.
问题探究:如图(2),在四边形中,,,点是的中点,点在边上,,与交于点,求证:.
问题拓展:如图(3),在“问题探究”的条件下,连接,,,直接写出的值.
【变式2】(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
【题型8】图形的相似与其他综合问题
【例8】(2024·安徽·中考真题)如图1,的对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.
(1)求证:;
(2)连接交于点H,连接,.
(ⅰ)如图2,若,求证:;
(ⅱ)如图3,若为菱形,且,,求的值.
【变式1】(2024·湖北·中考真题)如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.
(1)求证:.
(2)若为中点,且,求长.
(3)连接,若为中点,为中点,探究与大小关系并说明理由.
【变式2】(2024·吉林长春·中考真题)如图,在中,,.点是边上的一点(点不与点、重合),作射线,在射线上取点,使,以为边作正方形,使点和点在直线同侧.
(1)当点是边的中点时,求的长;
(2)当时,点到直线的距离为________;
(3)连结,当时,求正方形的边长;
(4)若点到直线的距离是点到直线距离的3倍,则的长为________.(写出一个即可)专题4.33 图形的相似中考压轴题分类专题(知识梳理与题型分类讲解)
第一部分【训练中考压轴题意义】
了解中考命题趋势和知识重难点 :通过训练历年中考数学真题,学生可以快速了解中考数学的命题趋势、试题分布以及知识重难点,从而对自己的知识储备进行全方位的查漏补缺
提高解题速度和精确度 :通过严格控制做题时间,用中考的时间要求自己,可以更加客观地训练解题速度和精确度,帮助学生适应考试节奏。
认识中考题型和命题风格 :中考真题令学生认识到中考的题型、命题风格、各知识版块分值分布,考查的重点及难易程度,对学生的帮助是最大的。
检验复习方向和效果 :真题成为检验复习方向以及复习效果的得力工具,通过定期模拟考试,学生可以了解自己的不足,进而调整复习策略。
提高应试能力 :通过反复做真题,学生能够适应考试的紧张氛围,掌握答题技巧,了解考点要求,提高解题能力和应变能力。
权威性和准确性 :真题的权威性和准确性远高于模拟题,因为它们来自于同一个命题组,考察点、风格以及难度等都很接近,通过对真题进行分析研究,可以总结出命题的规律。
综合性 :中考真题是命题组成员辛苦劳动的结晶,含金量高,出的题目在保证基础得分的同时,还具有一定的选拔作用,有助于提高学生的综合解题能力。
综上所述,训练数学中考真题对于提高学生的数学成绩和应试能力具有不可替代的作用,是备考过程中不可或缺的一部分。
第二部分【题型展示与方法点拨】
题型目录
【题型1】图形的相似与折叠问题
【题型2】图形的相似与旋转问题
【题型3】图形的相似与平移问题
【题型4】图形的相似与探究线段数量关系问题
【题型5】图形的相似与活动(问题、情景)探究问题
【题型6】图形的相似与作图问题
【题型7】图形的相似与问题的类比、拓展、延伸问题
【题型8】图形的相似与其他综合问题
【题型1】图形的相似与折叠问题
【例1】(2023·山东枣庄·中考真题)问题情境:如图1,在中,,是边上的中线.如图2,将的两个顶点B,C分别沿折叠后均与点D重合,折痕分别交于点E,G,F,H.
猜想证明:
(1)如图2,试判断四边形的形状,并说明理由.
问题解决;
(2)如图3,将图2中左侧折叠的三角形展开后,重新沿折叠,使得顶点B与点H重合,折痕分别交于点M,N,的对应线段交于点K,求四边形的面积.
【答案】(1)四边形是菱形,理由见解析;(2)30
【分析】(1)利用等腰三角形的性质和折叠的性质,得到,即可得出结论.
(2)先证明四边形为平行四边形,过点作于点,等积法得到的积,推出四边形的面积,即可得解.
解:(1)证明:四边形是菱形,理由如下:
∵在中,,是边上的中线,
∴,
∵将的两个顶点B,C分别沿折叠后均与点D重合,
∴,
∴,
∴,
∴,
同法可得:,
∴,
∵,
∴,
∴四边形是菱形;
(2)解:∵折叠,
∴,
∵,
∴,
∴,
∴,
∴四边形为平行四边形,
∵,
由(1)知:,,
∴,
过点作于点,
∵,
∴,
∵四边形的面积,,
∴四边形的面积.
【点拨】本题考查等腰三角形的性质,折叠的性质,平行线分线段对应成比例,菱形的判定,平行四边形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.
【变式1】(2020·江苏徐州·中考真题)我们知道:如图①,点把线段分成两部分,如果.那么称点为线段的黄金分割点.它们的比值为.
(1)在图①中,若,则的长为_____;
(2)如图②,用边长为的正方形纸片进行如下操作:对折正方形得折痕,连接,将折叠到上,点对应点,得折痕.试说明是的黄金分割点;
(3)如图③,小明进一步探究:在边长为的正方形的边上任取点,连接,作,交于点,延长、交于点.他发现当与满足某种关系时、恰好分别是、的黄金分割点.请猜想小明的发现,并说明理由.
【答案】(1);(2)见解析;(3)当PB=BC时,、恰好分别是、的黄金分割点,理由见解析
【分析】(1)由黄金比值直接计算即可;
(2)如图,连接GE,设BG=x,则AG=20-x,易证得四边形EFCD是矩形,可求得CE,由折叠知GH=BG=x,CH=BC=20,进而EH=CE-CH,在Rt△GAE和Rt△GHE中由勾股定理得关于x的方程,解之即可证得结论;
(3)当PB=BC时,证得Rt△PBF≌Rt△CBF≌Rt△BAE,则有BF=AE,设BF=x,则AF=a-x,由AE∥PB得AE:PB=AF:BF,解得x,即可证得结论.
解:(1)AB=×20=()(cm),
故答案为:;
(2)如图,连接GE,设BG=x,则GA=20-x,
∵四边形ABCD是正方形,
∴∠A=∠B=∠D=90 ,
由折叠性质得:CH=BC=20,GE=BG=x,∠GHC=∠B=90 ,AE=ED=10,
在Rt△CDE中,CE=,
∴EH=,
在Rt△GHE中,
在Rt△GAE中,,
∴,
解得:x=,
即,
∴是的黄金分割点;
(3)当PB=BC时,、恰好分别是、的黄金分割点.
理由:∵,
∴∠BCF+∠CBE=90 ,又∠CBE+∠ABE=90 ,
∴∠ABE=∠BCF,
∵∠A=∠ABC=90 ,AB=BC,
∴△BAE≌△CBF(ASA),
∴AE=BF,
设AE=BF=x,则AF=a-x,
∵AD∥BC即AE∥PB,
∴即,
∴,
解得:或(舍去),
即BF=AE=,
∴,
∴、分别是、的黄金分割点.
【点拨】本题考查了正方形的性质、折叠性质、勾股定理、全等三角形的判定与性质、平行线分线段成比例、解一元二次方程等知识,解答的关键是认真审题,找出相关信息的关联点,确定解题思路,进而推理、探究、发现和计算.
【变式2】(2024·辽宁·中考真题)如图,在中,,.将线段绕点顺时针旋转得到线段,过点作,垂足为.
图1 图2 图3
(1)如图1,求证:;
(2)如图2,的平分线与的延长线相交于点,连接,的延长线与的延长线相交于点,猜想与的数量关系,并加以证明;
(3)如图3,在(2)的条件下,将沿折叠,在变化过程中,当点落在点的位置时,连接.
①求证:点是的中点;
②若,求的面积.
【答案】(1)见详解; (2);(3)30
【分析】(1)利用“”即可证明;
(2)可知,证明,则,可得,则,故;
(3)①翻折得,根据等角的余角相等得到,故,则,即点F是中点;
②过点F作交于点M,连接,设,,则,由翻折得,故,因此,在中,由勾股定理得:,解得:或(舍,此时) ,在中,由勾股定理得:,解得:,则,由,得到,,因此,故.
解:(1)证明:如图,
由题意得,,
∴
∵,
∴,
∴,
∴,
∵,
∴,
∴;
(2)猜想:
证明:∵,
∴,
∵平分,
∴,
∵,
∴,
∴,
∵,,
∴,
∴,
∴;
(3)解:①由题意得,
∴,
∵,
∴,
∴,,
∴,
∴,
∴,即点F是中点;
②过点F作交于点M,连接,
∵,
∴,
设,,
∴,
由翻折得,
∴,
∴,
在中,由勾股定理得:,
整理得,,
解得:或(舍,此时) ,
在中,由勾股定理得:,
解得:,
∴,
∵,
∴,,
∴点M为中点,
∴,
∴.
【点拨】本题考查了全等三角形的判定与性质,等腰三角形的判定,翻折的性质,勾股定理解三角形,平行线分线段成比例定理,正确添加辅助线是解题的关键.
【题型2】图形的相似与旋转问题
【例2】(2024·山东东营·中考真题)在中,,,.
(1)问题发现
如图1,将绕点按逆时针方向旋转得到,连接,,线段与的数量关系是______,与的位置关系是______;
(2)类比探究
将绕点按逆时针方向旋转任意角度得到,连接,,线段与的数量关系、位置关系与(1)中结论是否一致?若交于点N,请结合图2说明理由;
(3)迁移应用
如图3,将绕点旋转一定角度得到,当点落到边上时,连接,求线段的长.
【答案】(1);;(2)一致;理由见解析;(3)
【分析】(1)延长交于点H,根据旋转得出,,,根据勾股定理得出,,根据等腰三角形的性质得出,,根据三角形内角和定理求出,即可得出结论;
(2)延长交于点H,证明,得出,,根据三角形内角和定理得出,即可证明结论;
(3)过点C作于点N,根据等腰三角形的性质得出,根据勾股定理得出,证明,得出,求出,根据解析(2)得出.
解:(1)解:延长交于点H,如图所示:
∵将绕点按逆时针方向旋转得到,
∴,,,
∴根据勾股定理得:,,
∴,
∵,,,
∴,,
∴,
∴.
(2)解:线段与的数量关系、位置关系与(1)中结论一致;理由如下:
延长交于点H,如图所示:
∵将绕点旋转得到,
∴,,,,
∴,
∴,
∴,,
∴;
又∵,,,
∴,
∴;
(3)解:过点C作于点N,如图所示:
根据旋转可知:,
∴,
∵在中,,,,
∴根据勾股定理得:,
∵,,
∴,
∴,
即,
解得:,
∴,
根据解析(2)可知:.
【点拨】本题主要考查了旋转的性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,解题的关键是作出辅助线,熟练掌握三角形相似的判定方法.
【变式1】(2024·广西·中考真题)如图1,中,,.的垂直平分线分别交,于点M,O,平分.
(1)求证:;
(2)如图2,将绕点O逆时针旋转得到,旋转角为.连接,
①求面积的最大值及此时旋转角的度数,并说明理由;
②当是直角三角形时,请直接写出旋转角的度数.
【答案】(1)见解析;(2)①,;②或
【分析】(1)利用线段垂直平分线的性质得出,利用等边对等角得出,结合角平分线定义可得出,最后根据相似三角形的判定即可得证;
(2)先求出,然后利用含的直角三角形性质求出,,,利用勾股定理求出,,取中点,连接,,作于N,由旋转的性质知,为旋转所得线段,则,,,根据点到直线的距离,垂线段最短知,三角形三边关系得出,故当M、O、三点共线,且点O在线段时,取最大值,最大值为,此时,最后根据三角形面积公式求解即可;
②先利用三角形三边关系判断出,,则当为直角三角形时,只有,然后分A和重合,和C重合,两种情况讨论即可.
解:(1)证明:∵垂直平分,
∴,
∴,
∵平分
∴,
∴,
又;
∴;
(2)解:①∵,
∴,
∴,
∴,
又,
∴,,
∵垂直平分,
∴,,
∴,
∴,
取中点,连接,,作于N,
由旋转的性质知,为旋转所得线段,
∴,,,
根据垂线段最短知,
又,
∴当M、O、三点共线,且点O在线段时,取最大值,最大值为,
此时,
∴面积的最大值为;
②∵,,
∴,
同理
∴为直角三角形时,只有,
当A和重合时,如图,
∵
∴,,
∴,
∵,
∴,
∴,
∴、O、M三点共线,
∴为直角三角形,
此时旋转角;
当和C重合时,如图,
同理,,
∴,
∵,
∴,
∴,
∴、O、M三点共线,
又
∴为直角三角形,
此时旋转角;
综上,旋转角的度数为或时,为直角三角形.
【点拨】本题考查了线段垂直平分线的性质,含的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.
【变式2】(2023·内蒙古赤峰·中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有角的三角尺放在正方形中,使角的顶点始终与正方形的顶点重合,绕点旋转三角尺时,角的两边,始终与正方形的边,所在直线分别相交于点,,连接,可得.
【探究一】如图②,把绕点C逆时针旋转得到,同时得到点在直线上.求证:;
【探究二】在图②中,连接,分别交,于点,.求证:;
【探究三】把三角尺旋转到如图③所示位置,直线与三角尺角两边,分别交于点,.连接交于点,求的值.
【答案】[探究一]见解析;[探究二]见解析;[探究三]
【分析】[探究一]证明,即可得证;
[探究二]根据正方形的性质证明,根据三角形内角和得出,加上公共角,进而即可证明
[探究三]先证明,得出,,将绕点顺时针旋转得到,则点在直线上.得出,根据全等三角形的性质得出,进而可得,证明,根据相似三角形的性质得出,即可得出结论.
解:[探究一]
∵把绕点C逆时针旋转得到,同时得到点在直线上,
∴,
∴,
∴,
在与中
∴
∴
[探究二]证明:如图所示,
∵四边形是正方形,
∴,
又,
∴,
∵,
∴,
又∵,
∴,
又∵公共角,
∴;
[探究三] 证明:∵是正方形的对角线,
∴,,
∴,
∵,
∴,
即,
∴,
∴,,
如图所示,将绕点顺时针旋转得到,则点在直线上.
∴,,
∴,
又,
∴,
∴,
∵,
∴,
又,
∴,
∴,
即.
【点拨】本题考查了全等三角形的性质与判定,旋转的性质,正方形的性质,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
【题型3】图形的相似与平移问题
【例3】(2022·辽宁沈阳·中考真题)如图,在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点,与直线OC交于点.
(1)求直线AB的函数表达式;
(2)过点C作轴于点D,将沿射线CB平移得到的三角形记为,点A,C,D的对应点分别为,,,若与重叠部分的面积为S,平移的距离,当点与点B重合时停止运动.
①若直线交直线OC于点E,则线段的长为________(用含有m的代数式表示);
②当时,S与m的关系式为________;
③当时,m的值为________.
【答案】(1)y=﹣x+9;(2)①m;②m2;③或15﹣2.
【分析】(1)将点B(0,9),C(8,3)的坐标代入直线解析式,求解即可;
(2)①过点C作CF⊥C′D′,易得△CFC′∽△AOB,可用m表达CF和C′F的长度,进而可表达点C′,D′的坐标,由点C的坐标可得出直线OC的解析式,代入可得点E的坐标;
②根据题意可知,当0<m<时,点D′未到直线OC,利用三角形面积公式可得出本题结果;
③分情况讨论,分别求出当0<m<时,当<m<5时,当5<m<10时,当10<m<15时,S与m的关系式,分别令S=,建立方程,求出m即可.
解:(1)解:将点B(0,9),C(8,3)的坐标代入直线y=kx+b,
∴,
解得.
∴直线AB的函数表达式为:y=﹣x+9;
(2)①由(1)知直线AB的函数表达式为:y=﹣x+9,
令y=0,则x=12,
∴A(12,0),
∴OA=12,OB=9,
∴AB=15;
如图1,过点C作CF⊥C′D′于点F,
∴CF∥OA,
∴∠OAB=∠FCC′,
∵∠C′FC=∠BOA=90°,
∴△CFC′∽△AOB,
∴OB:OA:AB=C′F:CF:CC′=9:12:15,
∵CC′=m,
∴CF=m,C′F=m,
∴C′(8﹣m,3+m),A′(12﹣m,m),D′(8﹣m,m),
∵C(8,3),
∴直线OC的解析式为:y=x,
∴E(8﹣m,3﹣m).
∴C′E=3+m﹣(3﹣m)=m.
故答案为:m.
②当点D′落在直线OC上时,有m=(8﹣m),
解得m= ,
∴当0<m<时,点D′未到直线OC,
此时S=C′E CF= m m=m2;
故答案为:m2.
③分情况讨论,
当0<m<时,由②可知,S=m2;
令S=m2= ,解得m=>(舍)或m=﹣(舍);
当≤m<5时,如图2,
设线段A′D′与直线OC交于点M,
∴M(m,m),
∴D′E=m﹣(3﹣m)=m﹣3,
D′M=m﹣(8﹣m)=m﹣8;
∴S=m2﹣ (m﹣3) (m﹣8)
=﹣m2+m﹣12,
令﹣m2+m﹣12=;
整理得,3m2﹣30m+70=0,
解得m= 或m=>5(舍);
当5≤m<10时,如图3,
S=S△A′C′D′=×4×3=6≠,不符合题意;
当10≤m<15时,如图4,
此时A′B=15﹣m,
∴BN=(15﹣m),A′N=(15﹣m),
∴S= (15﹣m) (15﹣m)=(15﹣m)2,
令(15﹣m)2=,解得m=15+2>15(舍)或m=15﹣2.
故答案为:或15﹣2.
【点拨】本题属于一次函数综合题,涉及待定系数法求函数解析式、三角形的面积、相似三角形的性质与判定、一元二次方程、分类讨论思想等知识,根据△A′C′D′的运动,进行正确的分类讨论是解题关键.
【变式1】(2022·广西贵港·中考真题)已知:点C,D均在直线l的上方,与都是直线l的垂线段,且在的右侧,,与相交于点O.
(1)如图1,若连接,则的形状为______,的值为______;
(2)若将沿直线l平移,并以为一边在直线l的上方作等边.
①如图2,当与重合时,连接,若,求的长;
②如图3,当时,连接并延长交直线l于点F,连接.求证:.
【答案】(1)等腰三角形,;(2)①;②见解析
【分析】(1)过点C作CH⊥BD于H,可得四边形ABHC是矩形,即可求得AC=BH,进而可判断△BCD的形状,AC、BD都垂直于l,可得△AOC∽△BOD,根据三角形相似的性质即可求解.
(2)①过点E作于点H,AC,BD均是直线l的垂线段,可得,根据等边三角形的性质可得,再利用勾股定理即可求解.
②连接,根据,得,即是等边三角形,把旋转得,根据30°角所对的直角边等于斜边的一般得到,则可得,根据三角形相似的性质即可求证结论.
解:(1)解:过点C作CH⊥BD于H,如图所示:
∵AC⊥l,DB⊥l,CH⊥BD,
∴∠CAB=∠ABD=∠CHB=90°,
∴四边形ABHC是矩形,
∴AC=BH,
又∵BD=2AC,
∴AC=BH=DH,且CH⊥BD,
∴的形状为等腰三角形,
∵AC、BD都垂直于l,
∴,
∴△AOC∽△BOD,
,即,
,
故答案为:等腰三角形,.
(2)①过点E作于点H,如图所示:
∵AC,BD均是直线l的垂线段,
∴,
∵是等边三角形,且与重合,
∴∠EAD=60°,
∴,
∴,
∴在中,,,
又∵,,
∴,
∴,AE=6
在中,,
又由(1)知,
∴,则,
∴在中,由勾股定理得:.
②连接,如图3所示:
∵,
∴,
∵由(1)知是等腰三角形,
∴是等边三角形,
又∵是等边三角形,
∴绕点D顺时针旋转后与重合,
∴,
又∵,
∴,
∴,
∴,
又,
∴,
∴,
∴.
【点拨】本题考查了矩形的判定及性质、三角形相似的判定及性质、等边三角形的判定及性质、勾股定理的应用,熟练掌握三角形相似的判定及性质和勾股定理的应用,巧妙借助辅助线是解题的关键.
【变式2】(2021·山东淄博·中考真题)已知:在正方形的边上任取一点,连接,一条与垂直的直线(垂足为点)沿方向,从点开始向下平移,交边于点.
(1)当直线经过正方形的顶点时,如图1所示.求证:;
(2)当直线经过的中点时,与对角线交于点,连接,如图2所示.求的度数;
(3)直线继续向下平移,当点恰好落在对角线上时,交边于点,如图3所示.设,求与之间的关系式.
【答案】(1)见详解;(2);(3)
【分析】(1)由题意易得,进而可得,则有,然后问题可求证;
(2)连接AQ,过点Q作QM⊥AD于点M,并延长MQ,交BC于点N,由题意易得AQ=FQ,∠ADB=45°,则有QM=MD,进而可得证,然后可得,则问题可求解;
(3)过点D作DH∥EG,交AB于点H,由题意易证四边形HEGD是平行四边形,则有,进而可得,然后可得,则问题可求解.
解:(1)证明:∵四边形是正方形,
∴,
∵AF⊥ED,
∴,
∴,
∴,
∴,
∴;
(2)解:连接AQ,过点Q作QM⊥AD于点M,并延长MQ,交BC于点N,如图所示:
∵点P是AF的中点,AF⊥EQ,
∴,
∵四边形是正方形,
∴,
∴四边形MNCD是矩形,△MDQ是等腰直角三角形,
∴,
∴,
∴,
∴,
∵,
∴,即,
∴是等腰直角三角形,
∴;
(3)过点D作DH∥EG,交AB于点H,如图所示:
∴四边形HEGD是平行四边形,
∴,
∵AF⊥EG,
∴AF⊥HD,
由(1)中结论可得,
∵,
∴,,
∴,
∵,
∴,
∴,
∴,
∴,
∴与之间的关系式为.
【点拨】本题主要考查正方形的性质、相似三角形的性质与判定、函数及等腰直角三角形的性质与判定,熟练掌握正方形的性质、相似三角形的性质与判定、函数及等腰直角三角形的性质与判定是解题的关键.
【题型4】图形的相似与探究线段数量关系问题
【例4】(2024·四川·中考真题)如图,在四边形中,,连接,过点作,垂足为,交于点,.
(1)求证:;
(2)若.
①请判断线段,的数量关系,并证明你的结论;
②若,,求的长.
【答案】(1)见解析;(2)①,理由见解析;②
【分析】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定与性质,相似三角形的判定和性质,勾股定理,直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.
(1)由余角的性质可得,,根据,可得;
(2)①设,可求,可求,根据等腰三角形的判定可得;
②由勾股定理可求,由“”可证,可得,通过证明,可得,即可求解.
解:(1)证明:,
,
,,
,
;
(2)解:①,理由如下:
设,
,
,
,
,
,
;
②,,
,
,,,
,
,
,,
,
,
,
.
【变式1】(2024·内蒙古包头·中考真题)如图,在中,为锐角,点在边上,连接,且.
(1)如图1,若是边的中点,连接,对角线分别与相交于点.
①求证:是的中点;
②求;
(2)如图2,的延长线与的延长线相交于点,连接的延长线与相交于点.试探究线段与线段之间的数量关系,并证明你的结论.
【答案】(1)①见解析;②;(2),理由见解析
【分析】(1)①根据,得出为的中点,证明出即可;②先证明出得到,然后再根据平行四边形的性质找到线段的数量关系求解;
(2)连接交于点,证明,进一步证明出四边形为平行四边形,得出为的中位线,得到,再证明出得到,再通过等量代换即可求解.
解:(1)解:①,
为的中点,
,
是边的中点,
,
,
在中,
∴,
又∵,
,
,
是的中点;
②,
四边形为平行四边形,
,
,
,
∵,
,
,
,
,
;
(2)解:线段与线段之间的数量关系为:,理由如下:
连接交于点,如下图:
由题意,的延长线与的延长线相交于点,连接的延长线与相交于点,
,
又,
,
,
,
,
四边形为平行四边形,
,
,
,
为的中点,
,
,
为的中点,
为的中位线,
,
,
,
,
,
,
,
.
【点拨】本题考查了平行四边形的性质,三角形全等的判定及性质,三角线相似的判定及性质,三角形的中位线等知识,解题的关键是添加适当的辅助线构造全等三角形来求解.
【变式2】(2024·湖北·中考真题)在矩形中,点E,F分别在边,上,将矩形沿折叠,使点A的对应点P落在边上,点B的对应点为点G,交于点H.
(1)如图1,求证:;
(2)如图2,当P为的中点,,时,求的长;
(3)如图3,连接,当P,H分别为,的中点时,探究与的数量关系,并说明理由.
【答案】(1)见解析;(2);(3),见解析
【分析】(1)证明对应角相等,即可得到;
(2)根据,求得的长度,从而得出长度;
(3)延长,交于一点,连接,先证明,得到相等的边,再根据,得出大小关系.
解:(1)证明:如图,
四边形是矩形,
,
,
,分别在,上,将四边形沿翻折,使的对称点落在上,
,
,
,
;
(2)解:四边形是矩形,
,,,
为中点,
,
设,
,
在中,,
即,
解得,
,
,
,
,即,
,
,
.
(3)解:如图,延长,交于一点,连接,
,分别在,上,将四边形沿翻折,使的对称点落在上,
,直线,
,
,
,
,
是等腰三角形,
,
为中点,
设,
,
为中点,
,
,,
,
,,
,
,
在中,,
,
,
在中,,
,
,
,
,
,
,即.
【点拨】本题考查了矩形与折叠、相似三角形的判定与性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握以上基础知识是解题关键.
【题型5】图形的相似与活动(问题、情景)探究问题
【例5】(2024·四川广元·中考真题)数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.
在中,点为边上一点,连接.
(1)初步探究
如图2,若,求证:;
(2)尝试应用
如图3,在(1)的条件下,若点为中点,,求的长;
(3)创新提升
如图4,点为中点,连接,若,,,求的长.
【答案】(1)证明见解析; (2);(3)
【分析】(1)根据题意,由,,利用两个三角形相似的判定定理即可得到,再由相似性质即可得证;
(2)设,由(1)中相似,代值求解得到,从而根据与的相似比为求解即可得到答案;
(3)过点作的平行线交的延长线于点,如图1所示,设,过点作于点,如图2所示,利用含的直角三角形性质及勾股定理即可得到相关角度与线段长,再由三角形相似的判定与性质得到,代值求解即可得到答案.
解:(1)证明:∵,,
∴,
∴,
∴;
(2)解:∵点为中点,
∴设,
由(1)知,
∴,
∴,
∴与的相似比为,
∴,
∵
∴;
(3)解:过点作的平行线交的延长线于点,过作,如图1所示:
∵点为中点,
∴设,
∵,
∴,,
在中,,则由勾股定理可得,
过点作于点,如图2所示:
∴,
∴,
∴,
∴,,
∴,
∴,
∵,点为中点,
∴,,,
又∵,
∴,,
∴,
又∵,
∴,,
∴,即,
∴,
∴.
【点拨】本题考查几何综合,涉及相似三角形的判定与性质、含的直角三角形性质、勾股定理等知识,熟练掌握三角形相似的判定与性质是解决问题的关键.
【变式1】(2024·贵州·中考真题)综合与探究:如图,,点P在的平分线上,于点A.
(1)【操作判断】
如图①,过点P作于点C,根据题意在图①中画出,图中的度数为______度;
(2)【问题探究】
如图②,点M在线段上,连接,过点P作交射线于点N,求证:;
(3)【拓展延伸】
点M在射线上,连接,过点P作交射线于点N,射线与射线相交于点F,若,求的值.
【答案】(1)画图见解析,90; (2)见解析;(3)或
【分析】(1)依题意画出图形即可,证明四边形是矩形,即可求解;
(2)过P作于C,证明矩形是正方形,得出,利用证明,得出,然后利用线段的和差关系以及等量代换即可得证;
(3)分M在线段,线段的延长线讨论,利用相似三角形的判定与性质求解即可;
解:(1)解:如图,即为所求,
∵,,,
∴四边形是矩形,
∴,
故答案为:90;
(2)证明:过P作于C,
由(1)知:四边形是矩形,
∵点P在的平分线上,,,
∴,
∴矩形是正方形,
∴,,
∵,
∴,
又,,
∴,
∴,
∴
;
(3)解:①当M在线段上时,如图,延长、相交于点G,
由(2)知,
设,则,,
∴,
∵,,
∴,
∴,
∵,,
∴,
∴,
∴,
∴,
∴;
②当M在的延长线上时,如图,过P作于C,并延长交于G
由(2)知:四边形是正方形,
∴,,,
∵,
∴,
又,,
∴,
∴,
∴
,
∵
∴,,
∵,
∴,
∴,即,
∴,
∵,
∴,
∴,
∴,
∴;
综上,的值为或.
【点拨】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.
【变式2】(2024·四川乐山·中考真题)在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:
【问题情境】
如图1,在中,,,点D、E在边上,且,,,求的长.
解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,
,,,
∴___①___.
∴.
又∵,
∴在中,___②___.
∵,,
∴___③___.
【问题解决】
上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.
刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.
【知识迁移】
如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.
【拓展应用】
如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).
【问题再探】
如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.
【答案】【问题解决】①;②;③5;【知识迁移】,见解析;【拓展应用】;【问题再探】
【分析】【问题解决】根据题中思路解答即可;
【知识迁移】如图,将绕点逆时针旋转,得到.过点作交边于点,连接.由旋转的特征得.结合题意得.证明,得出.根据正方形性质得出.结合,得出.证明,得出.证明.得出.在中,根据勾股定理即可求解;
【拓展应用】如图所示,设直线交延长线于点,交延长线于点,将绕着点顺时针旋转,得到,连接.则.则,,根据,证明,得出,过点H作交于点O,过点H作交于点M,则四边形为矩形.得出,证明是等腰直角三角形,得出,,在中,根据勾股定理即可证明;
【问题再探】如图,将绕点逆时针旋转,得到,连接.过点作,垂足为点,过点作,垂足为.过点作,过点作交于点、交于点.由旋转的特征得.根据,得出,证明,得出,根据勾股定理算出,根据,表示出,证明,根据相似三角形的性质表示出,,同理可得.,证明四边形为矩形.得出,,在中,根据勾股定理即可求解;
解:【问题解决】解:如图2,将绕点A逆时针旋转得到,连接.
由旋转的特征得,,,.
∵,,
∴.
∵,
∴,即.
∴.
在和中,,,,
∴①.
∴.
又∵,
∴在中,②.
∵,,
∴③.
【知识迁移】.
证明:如图,将绕点逆时针旋转,得到.
过点作交边于点,连接.
由旋转的特征得.
由题意得,
∴.
在和中,,
∴.
∴.
又∵为正方形的对角线,
∴.
∵,
∴.
在和中,,
∴,
∴.
在和中,,
∴.
∴.
在中,,
∴.
【拓展应用】.
证明:如图所示,设直线交延长线于点,交延长线于点,
将绕着点顺时针旋转,得到,连接.
则.
则,,
,
,
在和中
,
,
∴,
过点H作交于点O,过点H作交于点M,则四边形为矩形.
∴,
,
,
是等腰直角三角形,
,
,
,
,
,
在中,,,
∴,
即,
又∴,
∴,
即,
【问题再探】如图,将绕点逆时针旋转,得到,连接.过点作,垂足为点,过点作,垂足为.过点作,过点作交于点、交于点.
由旋转的特征得.
,
,
,即,
在和中,,
,
,
,
,
又,
,
,
,
,
,即,
,
同理可得.
,
,
,
又∵,
∴四边形为矩形.
,
,
在中,.
,
解得.
【点拨】本题是四边形的综合题,考查的是旋转变换的性质、矩形的性质和判定、正方形的性质和判定、勾股定理、等腰直角三角形的性质和判定、全等三角形的判定和性质,相似三角形的判定和性质,灵活运用旋转变换作图,掌握以上知识点是解题的关键.
【题型6】图形的相似与作图问题
【例6】(2024·广东深圳·中考真题)垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.
(1)如图1所示,四边形为“垂中平行四边形”,,,则________;________;
(2)如图2,若四边形为“垂中平行四边形”,且,猜想与的关系,并说明理由;
(3)①如图3所示,在中,,,交于点,请画出以为边的垂中平行四边形,要求:点在垂中平行四边形的一条边上(温馨提示:不限作图工具);
②若关于直线对称得到,连接,作射线交①中所画平行四边形的边于点,连接,请直接写出的值.
【答案】(1),; (2),理由见解析;(3)①见解析;②或.
【分析】(1)根据题意可推出,得到,从而推出,再根据勾股定理可求得,再求得;
(2)根据题意可推出,得到,设,则,,再利用勾股定理得到,从而推出、,即可求得答案;
(3)①分情况讨论,第一种情况,作的平行线,使,连接,延长交于点;第二种情况,作的平分线,取交的平分线于点,延长交的延长线于点,在射线上取,连接;第三种情况,作,交的延长线于点,连接,作的垂直平分线;
在延长线上取点F,使,连接;
②根据①中的三种情况讨论:
第一种情况,根据题意可证得是等腰三角形,作,则,可推出,从而推出,计算可得,最后利用勾股定理即可求得;
第二种情况,延长、交于点,同理可得是等腰三角形,连接,可由,结合三线合一推出,从而推出,同第一种情况即可求得;
第三种情况无交点,不符合题意.
解:(1)解:,为的中点,,,,
,,
,即,解得,
,
;
故答案为:1;;
(2)解:,理由如下:
根据题意,在垂中四边形中,,且为的中点,
,;
又,
,
;
设,则,
,
,
,,
,
,
,
;
(3)解:①第一种情况:
作的平行线,使,连接,
则四边形为平行四边形;
延长交于点,
,
,
,
,,
,即,
为的中点;
故如图1所示,四边形即为所求的垂中平行四边形:
第二种情况:
作的平分线,取交的平分线于点,延长交的延长线于点,在射线上取,连接,
故为的中点;
同理可证明:,
则,
则四边形是平行四边形;
故如图2所示,四边形即为所求的垂中平行四边形:
第三种情况:
作,交的延长线于点,连接,作的垂直平分线;
在延长线上取点F,使,连接,
则为的中点,
同理可证明,从而,
故四边形是平行四边形;
故如图3所示,四边形即为所求的垂中平行四边形:
②若按照图1作图,
由题意可知,,
四边形是平行四边形,
,
,
是等腰三角形;
过P作于H,则,
,,
,,
,
;
,,
,
,即
∴
若按照图2作图,
延长、交于点,
同理可得:是等腰三角形,
连接,
,
,
,
,
;
同理,,
,,,
,即,
,
若按照图3作图,则:没有交点,不存在PE(不符合题意)
故答案为:或.
【点拨】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的辅助线是解题的关键.
【变式1】(2024·江苏镇江·中考真题)主题学习:仅用一把无刻度的直尺作图
【阅读理解】
任务:如图1,点D、E分别在的边、上,,仅用一把无刻度的直尺作、的中点.
操作:如图2,连接、交于点P,连接交于点M,延长交于点N,则M、N分别为、的中点.
理由:由可得及,所以,.所以,.同理,由及,可得,.所以.所以,则,,即M、N分别为、的中点.
【实践操作】
请仅用一把无刻度的直尺完成下列作图,要求:不写作法,保留作图痕迹.
(1)如图3,,点E、F在直线上.
①作线段的中点;
②在①中作图的基础上,在直线上位于点F的右侧作一点P,使得;
(2)小明发现,如果重复上面的过程,就可以作出长度是已知线段长度的3倍、4倍、…k倍(k为正整数)的线段.如图4,,已知点、在上,他利用上述方法作出了.点E、F在直线上,请在图4中作出线段的三等分点;
【探索发现】
请仅用一把无刻度的直尺完成作图,要求:不写作法,保留作图痕迹.
(3)如图5,是的中位线.请在线段上作出一点Q,使得(要求用两种方法).
【分析】实践操作(1)①根据[阅读理解]部分的作法:在上方任取一点,得到,与交于点,交于点,连接,交于点,作射线交,分别于,,点即为所求点;
②作射线交于点,作射线交于点,点即为所求;
(2)根据上述作法,有两种作法;
[探索发现]如作法一,根据相似可知,连接,交于点,则,即点是的三等分点之一,由此可以得出过点作的平行线;同理可得点是的三等分点之一,则,即点为所求作点.
解:[实践操作]
(1)①如图,
点即为所求作的点;
②如图,
点即为所求作的点;
(2)如图,
作法一、
作法二、
点,即为所求作的点;
[探索发现](3)如图,
作法一、
作法二、
作法三、
作法四、
作法五、
点即为所求的点.
【点拨】本题主要相似三角形的性质与判定,复杂的几何作图,考查类比的数学思想,理解[阅读理解]部分中,为中点是解题关键.
【变式2】(2024·江苏盐城·中考真题)如图1,E、F、G、H分别是平行四边形各边的中点,连接交于点M,连接AG、CH交于点N,将四边形称为平行四边形的“中顶点四边形”.
(1)求证:中顶点四边形为平行四边形;
(2)①如图2,连接交于点O,可得M、N两点都在上,当平行四边形满足________时,中顶点四边形是菱形;
②如图3,已知矩形为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)
【答案】(1)见解析;(2)①;②见解析.
【分析】题目主要考查平行四边形及菱形的判定和性质,三角形重心的性质,理解题意,熟练掌握三角形重心的性质是解题关键.
(1)根据平行四边形的性质,线段的中点平分线段,推出四边形,四边形均为平行四边形,进而得到:,即可得证;
(2)①根据菱形的性质结合图形即可得出结果;
②连接,作直线,交于点O,然后作,然后连接即可得出点M和N分别为的重心,据此作图即可.
解:(1)证明:∵,
∴,
∵点E、F、G、H分别是各边的中点,
∴,
∴四边形为平行四边形,
同理可得:四边形为平行四边形,
∴,
∴四边形是平行四边形;
(2)①当平行四边形满足时,中顶点四边形是菱形,
由(1)得四边形是平行四边形,
∵,
∴,
∴中顶点四边形是菱形,
故答案为:;
②如图所示,即为所求,
连接,作直线,交于点O,然后作(或作BM=MN=ND),然后连接即可,
∴点M和N分别为的重心,符合题意;
证明:矩形,
∴,
∵,
∴,
∴四边形为平行四边形;
分别延长交四边于点E、F、G、H如图所示:
∵矩形,
∴,,
由作图得,
∴,
∴,
∴点F为的中点,
同理得:点E为的中点,点G为的中点,点H为的中点.
【题型7】图形的相似与问题的类比、拓展、延伸问题
【例7】(2024·四川达州·中考真题)在学习特殊的平行四边形时,我们发现正方形的对角线等于边长的倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.
(1)四边形是菱形,
,,.
.
又,,
______+______.
化简整理得______.
【类比探究】
(2)如图2.若四边形是平行四边形,请说明边长与对角线的数量关系.
【拓展应用】
(3)如图3,四边形为平行四边形,对角线,相交于点,点为的中点,点为的中点,连接,若,,,直接写出的长度.
【答案】(1),,;(2);(3)
【分析】(1)根据菱形的性质及勾股定理补充过程,即可求解;
(2)过点作于点,过点作交的延长线于点,根据平行四边形的性质得,,,证明,
得,,,根据勾股定理得, ,继而得出的值即可;
(3)由(2)可得得出,过点分别作的垂线,垂足分别为,连接,根据勾股定理以及已知条件,分别求得,根据得出,根据得出,进而勾股定理,即可求解.
解:(1)四边形是菱形,
,,.
.
又,,
.
化简整理得
故答案为:,,.
(),理由如下,
过点作于点,过点作交的延长线于点,
∴,
∵四边形是平行四边形,
∴,,,
∴,
在和中,
,
∴,
∴,,
在中,,
在中,,
∴
,
∴
()∵四边形是平行四边形,,,,
∴由()可得
∴
解得:(负值舍去)
∵四边形是平行四边形,
∴,,,
如图所示,过点分别作的垂线,垂足分别为,连接,
∵分别为的中点,
∴
∵,
∴,
∵是的中点,
∴
∴,
∴,
在中,,
∴,
∵为的中点,
∴,
∵,
∴,
∴
∵,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
在中,.
【点拨】本题考查了菱形的性质,平行四边形的性质,勾股定理,全等三角形的性质与判定,相似三角形的性质与判定,平行线分线段成比例,熟练掌握勾股定理是解题的关键.
【变式1】(2024·湖北武汉·中考真题)问题背景:如图(1),在矩形中,点,分别是,的中点,连接,,求证:.
问题探究:如图(2),在四边形中,,,点是的中点,点在边上,,与交于点,求证:.
问题拓展:如图(3),在“问题探究”的条件下,连接,,,直接写出的值.
【答案】问题背景:见解析;问题探究:见解析;问题拓展:
【分析】问题背景:根据矩形的性质可得,根据点,分别是,的中点,可得,即可得证;
问题探究:取的中点,连接,得是的中位线,根据已知条件可得平行且等于,进而可得是平行四边形,得,则,根据直角三角形中斜边上的中线等于斜边的一半得出,进而可得,等量代换可得,等角对等边,即可得证;
问题拓展:过点作,则四边形是矩形,连接,根据已知以及勾股定理得出;根据(2)的结论结合已知可得,证明垂直平分,进而得出,证明,进而证明, 进而根据相似三角形的性质,即可求解.
解:问题背景:∵四边形是矩形,
∴,
∵,分别是,的中点
∴,
即,
∴;
问题探究:如图所示,取的中点,连接,
∵是的中点,是的中点,
∴,
又∵,
∴,
∵,
∴
∴四边形是平行四边形,
∴
∴
又∵,是的中点,
∴
∴
∴,
∴;
问题拓展:如图所示,过点作,则四边形是矩形,连接,
∵,
∴,
设,则,
在中,,
∵,由(2)
∴,
又∵是的中点,
∴垂直平分
∴,,
在中,
∴
设,则
∴,
又∵
∴
∴
又∵
∴
∴.
【点拨】本题考查了矩形的性质,相似三角形的性质与判定,平行四边形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,全等三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.
【变式2】(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.
【模型建立】
(1)求证:;
【模型应用】
(2)若,,,求的长;
【模型迁移】
(3)如图2,若矩形是正方形,,求的值.
【答案】(1)见解析;(2);(3)
【分析】本题考查矩形的性质,正方形的性质,勾股定理,相似三角形的判定和性质,熟练掌握相关知识点,构造相似三角形,是解题的关键:
(1)根据矩形的性质,结合同角的余角,求出,即可得证;
(2)延长交于点,证明,得到,再证明,求出的长,进而求出的长;
(3)设正方形的边长为,延长交于点,证明,得到,进而得到,勾股定理求出,进而求出的长,即可得出结果.
解:(1)∵矩形,
∴,
∴,
∵,
∴,
∴,
∴;
(2)延长交于点,
∵矩形,
∴,
∴,
∴,
∴,
∵,,
∴,
∴,
∴,
∴;
(3)设正方形的边长为,则:,
延长交于点,
∵正方形,
∴,
∴,
∴,
∴,
∴,
∵,
∴,
∴.
【题型8】图形的相似与其他综合问题
【例8】(2024·安徽·中考真题)如图1,的对角线与交于点O,点M,N分别在边,上,且.点E,F分别是与,的交点.
(1)求证:;
(2)连接交于点H,连接,.
(ⅰ)如图2,若,求证:;
(ⅱ)如图3,若为菱形,且,,求的值.
【答案】(1)见详解; (2)(ⅰ)见详解,(ⅱ)
【分析】(1)利用平行四边形的性质得出,再证明是平行四边形,再根据平行四边形的性质可得出,再利用证明,利用全等三角形的性质可得出.
(2)(ⅰ)由平行线截线段成比例可得出,结合已知条件等量代换,进一步证明,由相似三角形的性质可得出,即可得出.(ⅱ)由菱形的性质得出,进一步得出,,进一步可得出,进一步得出,同理可求出,再根据即可得出答案.
解:(1)证明:∵四边形是平行四边形,
∴,,
∴,
又∵,
∴四边形是平行四边形,
∴,
∴.
在与中,
∴.
∴.
(2)(ⅰ)∵
∴,
又.,
∴,
∵,
∴,
∴,
∴
(ⅱ)∵是菱形,
∴,
又,,
∴,
∴,
∵.,
∴,
∴,
即,
∴,
∴,
∵,,,
∴,
∴,
即,
∴
∴,
故.
【点拨】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.
【变式1】(2024·湖北·中考真题)如图,矩形中,分别在上,将四边形沿翻折,使的对称点落在上,的对称点为交于.
(1)求证:.
(2)若为中点,且,求长.
(3)连接,若为中点,为中点,探究与大小关系并说明理由.
【答案】(1)见详解; (2); (3)
【分析】(1)根据矩形的性质得,由折叠得出,得出,即可证明;
(2)根据矩形的性质以及线段中点,得出,根据代入数值得,进行计算,再结合,则,代入数值,得,所以;
(3)由折叠性质,得直线,,是等腰三角形,则,因为为中点,为中点,所以,,所以,则,所以,则,即可作答.
解:(1)解:如图:
∵四边形是矩形,
∴,
∴,
∵分别在上,将四边形沿翻折,使的对称点落在上,
∴,
∴,
∴,
∴;
(2)解:如图:
∵四边形是矩形,
∴,,
∵为中点,
∴,
设,
∴,
在中,,
即,
解得,
∴,
∴,
∵,
∴,
∴,
解得,
∵,
∴;
(3)解:如图:延长交于一点M,连接
∵分别在上,将四边形沿翻折,使的对称点落在上,
∴直线
,
,
∴是等腰三角形,
∴,
∵为中点,
∴设,
∴,
∵为中点,
∴,
∵,,
∴,
∴,,
∴,
在中,,
∴,
∴,
在中,,
∵,
∴,
∴,
∴,
∴,
∴,
【点拨】本题考查了矩形与折叠,相似三角形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.
【变式2】(2024·吉林长春·中考真题)如图,在中,,.点是边上的一点(点不与点、重合),作射线,在射线上取点,使,以为边作正方形,使点和点在直线同侧.
(1)当点是边的中点时,求的长;
(2)当时,点到直线的距离为________;
(3)连结,当时,求正方形的边长;
(4)若点到直线的距离是点到直线距离的3倍,则的长为________.(写出一个即可)
【答案】(1); (2);(3);(4)或
【分析】本题考查等腰三角形性质,勾股定理,锐角三角函数,熟练掌握面积法是解题的关键;(1)根据等腰三角形三线合一性质,利用勾股定理即可求解;(2)利用面积法三角形面积相等即可;(3)设,则,,过点作于
,根据,建立方程;即可求解;(4)第一种情况,,在异侧时,设,,则,证明,得到,即可求解;第二种情况,当,在同侧,设,则,,,求得,解方程即可求解;
解:(1)解:根据题意可知:,
为等腰三角形,故点是边的中点时,;
在中,;
(2)根据题意作,如图所示;
当时,则,
设点到直线的距离为,
,
解得:;
(3)如图,当时,点落在上,
设,则,,
过点作于
则,
,
,
解得:
故,
所以正方形的边长为;
(4)如图,,在异侧时;
设,,则
三边的比值为,
,
,
当,在同侧
设,则,,
三边比为,
三边比为,
设,则,,
解得:
综上所述:的长为或