第十四章整式乘法与因式分解数学活动——用完全平方式分解因式教学设计

文档属性

名称 第十四章整式乘法与因式分解数学活动——用完全平方式分解因式教学设计
格式 zip
文件大小 20.2KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2016-02-18 16:15:35

图片预览

文档简介

用完全平方公式分解因式教学设计
[教学内容分析]
本节课是学生学习了提取公因式法,平方差公 ( http: / / www.21cnjy.com )式分解因式法的基础上学习的,是前一章整式乘法中完全平方公式的逆运用,是后一章分式的基础,起着承上启下的的作用,在教学方面的与上一课时(用平方差公式分解因式有类似之处)学生比较容易接受,所以在本课一开始就通过练习,复方差分解因式,而且让学生注意到因式分解的大忌,不能浅尝而止,必须分解因式到不能分解为止,让学生重温因式分解的方法不是孤立的,而是各种方法的综合运用。但是判断一个多项式是完全平形式难度比较大,所以本课时关键在于如何判断一个多项式是完全平方式。
[教学目标]
知识目标:会判断多项式是完全平方式,并掌握用此公式分解因式的方法。
能力目标:(1)培养学生换元的思想,养成严密的思维习惯,进一步培养学生观察能力。分析能力和概括能力
(2)培养学生主动探索,敢于实践,勇于发现,合作交流的精神。
情感目标 (1) 通过对形式不同的问题解答,激发学生的学习兴趣,使全体学生积极参与,体验到成功的喜悦。
(2)引导学生在课堂活动中感悟知识的生成,发展和变化。
[教学重、难点]
重点:用完全平方公式分解因式
难点:灵活运用完全平方公式分解因式
[教学过程]
教学过程 设计说明
复习引入,提出课题做一做:把下列各式分解因式(学生上台板演)(1)ax4-ax2 (2)16m4-n4ax4-ax2= ax2(x+1)(x-1)16m4-n4=(4m2)2-(n2)2=(4m2+ n2)(4m2- n2)=(4m2+ n2)(2m+ n)(2m- n)估计有部分学生只是把多项式分解到(4m2+ n2)(4m2- n2)的形式,教师予以强调指出必须分解到每个因式不能分解为止。(2)考一考a、除了平方差公式外,还有那些公式?b、如何 表示? (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2c、怎样用语言表述?d、把公式应该怎么写?教师板书a2+2ab+b2 =(a+b)2 a2-2ab+b2=(a-b)2e、用语言怎么表达?f、教师引出课题 复习铺垫对学习新知识是必要的,它可以扫清学习新知识的障碍,顺利进入新的知识学习之中。让学生自己感悟新旧知识的交替、衔接,有利于学生在实践中体会知识的生成过程。语言是思维的外壳,尝试用语言表达公式,既提高语言表达能力,又由感性认识发展到理性认识。同时发展学生的评价能力
二、整理新知,形成结构 1、填写下表(若某一栏不适用,请填入不是,并说明理由)多项式是否是完全平方式a、b各表示什么表示(a+b)2或(a-b)2x2-6x+9是a表示x,b表示3(x-3)24y2+4y+11+4a2 x2++1+m+m24y2-12xy+9x2(2x+y)2-6(2x+y)+9先出现表格的部分内容,然后逐渐出示多项式,由学生抢答。进行小组比赛。要求学生暴露思维过程:如x2-6x+9,因 ( http: / / www.21cnjy.com )为由第一项可知道a=x ,由第三项可知b= 3,而且 2ab=2 × 3x 刚好等于中间项。所以这多项式是完全平方式。因为中间项符号为负,所以多项式可分解为(x-3)22、反思: (1)观察第三列可发现a、b各表示什么,学生观察讨论总结可得a、b可以表示单项式,多项式。(2)猜测部分学生能理解a、b可表示单项式 ( http: / / www.21cnjy.com )和多项式。由于在公式中有字母a、b,被分解的多项式中往往也含有字母a、b,学生非常容易混淆,部分学生理解有困难,不妨用“□”表示a,用△表示b,则公式可表示为什么形式?易得□2+2□△+△2=(□+△)2□2-2□△+△2=(□-△)2 在进一步引导学生掌握完全平 ( http: / / www.21cnjy.com )方式的特征的同时,能让学生对公式的特征有足够的理解,并在此的基础上,让学生用自己的语言来阐述思考过程,这是符合学生的认知规律的,也体现了新课程标准下的理念由于初一同学活泼好动好表现,争强好胜,集体荣誉感强,课堂里引进了竞争机制,发动全员参与,提高了学习兴趣,体现了评价主体和评价方式的多元化。由学生观察,思考,培养学生勤动脑筋和表达,概括和归纳能力在教学中符号是必不可少的语言,它能清晰而简明地表达数学思想与规律。
引导探究,自主合作 在上面的表格中,1+4a2 x2++不是完全平方式,如何修改使之成为完全平方式? 开放性问题的提出,再次激发了学生的热情,在合作交流中,不但能巩固知识,更能培养学生与人合作的精神和创新的意识,同时也是遵循了巩固性原则。
互问互检,展示个性生互编互答互评 ( http: / / www.21cnjy.com ) 2、学生相互间的活动结束后,教师不失时机对学生说老师也出题考考咱们的同学。然后教师给出课本163页的课内练习1,这些等式平时学生就很容易出错,让学生暴露问题,然后师生一起纠正。 遵循巩固性和发展性相结合的原则,进一步展示学生的个性,培养学生的创新精神和创造能力。学生精彩的一面,教师都给予肯定,让学生享受成功的喜悦,即使答得不够完整,但是他能积极思考也予以表扬。
合作学习,延伸提高把下列各式分解因式(1)-x2+4xy-4y2(2)3ax2+6axy+3ay2(3)m4+4以四人为一组,合作讨论,讨论结果分组汇报交流,教师予以评价。对于(1)-x2+4xy-4y2学生若能发现提取负号后是完全平方公式,予以表扬,若不能我提示结合完全平方公式的三项的符号特点与(1)对比,你有什么发现?对于(3),学生已经有了添项的经验,可是添的中间项正负都有可能,就放手让学生添,碰壁后学生会豁朗开朗的。 再一次大胆地放手让学生参与,且不失时机地表扬,以增强同学们的自信心,使同学能保持强烈的学习欲望,从而提高教学效果
归纳小结,布置作业通过本节课你学会了什么,有什么收获课外作业:请同学们设计多样化的多项式,然后同学之间相互解答。 课堂小结让学生回顾,目的是充分发挥学生的主体作用,给他们发言的机会,从而也锻炼了他们归纳、整理、表达的能力。
设计理念:
为了充分调动学生学习的积极性,改变 ( http: / / www.21cnjy.com )课堂过于注重知识传授的倾向,变被动乏味的学习为主动愉快的学习,关注学生学习的兴趣和经验,实施开放式教学,让学生主动参与学习活动,把课堂上得高效,在教学中,引导学生互编互检互评,探究等活动,让愉快的学习贯穿教学的始终,充分体现了“自主合作,探究交流”的教学理念。
引导学生在获取知识的过程冲,学会观察,概括,表达、换元等数学思想。