(共13张PPT)
22.2二次函数y=ax2的图象和性质
x
...
...
0
-2
-1.5
-1
-0.5
1
1.5
0.5
2
列表
描点
连线
y=x2
...
...
0
0.25
1
2.25
4
0.25
1
2.25
4
描点法
用光滑曲线连结时要
自左向右顺次连结
y= - x2
...
...
0
-0.25
-1
-2.25
-4
-0.25
-1
-2.25
-4
注意:列表时自变量
取值要均匀和对称。
二次函数y=ax2的图象形如物体抛射时
所经过的路线,我们把它叫做抛物线。
这条抛物线关于y轴
对称,y轴就是它的
对称轴。
对称轴与抛物线的交点
叫做抛物线的顶点。
二次函数y=ax2的性质
1.顶点坐标与对称轴
2.位置与开口方向
3.增减性与最值
抛物线
顶点坐标
对称轴
位置
开口方向
增减性
最值
y=x2
y= -x2
(0,0)
(0,0)
y轴
y轴
在x轴的上方(除顶点外)
在x轴的下方( 除顶点外)
向上
向下
当x=0时,最小值为0.
当x=0时,最大值为0.
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
根据图形填表:
1.抛物线y=ax2的顶点是原点,对称轴是y轴.
2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.
3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.
二次函数y=ax2的性质
例1、已知二次函数y=ax2(a≠0)的图像经过点(-2,-3). (1)求a的值,并写出这个二次函数的解析式.
(2)说出这个二次函数的顶点坐标、对称轴、开口方向和图像的位置.
(3)判断点B(-1,- 4)是否在此抛物线上。
(4)求出此抛物线上纵坐标为-6的点的坐标。
练习一、若抛物线y=ax2 (a ≠ 0),过点(-1,3)。
(1)则a的值是 ;
(2)对称轴是 ,开口 。
(3)顶点坐标是 ,顶点是抛物线上的 。
抛物线在x轴的 方(除顶点外)。
若抛物线 的开口向下,则m的取值范围为( )
练一练:
例2:若函数 为二次函数,且图象的开口向下,求k的值.
知道你就别客气
例题欣赏P40
8
2.填空:(1)抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= 时,函数y的值最小,最小值是 ,抛物线y=2x2在x轴的 方(除顶点外).
(2)抛物线 在x轴的 方(除顶点外),在对称轴的
左侧,y随着x的 ;在对称轴的右侧,y随着x的
,当x=0时,函数y的值最大,最大值是 ,
当x 0时,y<0.
驶向胜利的彼岸
(0,0)
y轴
对称轴的右
对称轴的左
0
0
上
下
增大而增大
增大而减小
0
回味无穷
2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;
当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.
3.当a>0时,在对称轴的左侧,y随着x的增大而减小;
在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a<0时,在对称轴的左侧,y随着x的增大而增大;
在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.
小结 拓展
1.抛物线y=ax2的顶点是原点,对称轴是y轴.
驶向胜利的彼岸
由二次函数y=x2和y=-x2知:
结束寄语
只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步.
下课了!