[学案+答案]人教版 必修二第六章第四节《万有引力理论的成就》

文档属性

名称 [学案+答案]人教版 必修二第六章第四节《万有引力理论的成就》
格式 zip
文件大小 294.0KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2016-02-17 11:17:48

图片预览

文档简介

6.4 《万有引力理论的成就》学案
【学习目标】
1.了解万有引力定律在天文学上的应用
2.会用万有引力定律计算天体的质量和密度
3.掌握综合运用万有引力定律和圆周运动学知识分析具体问题的方法
【重点难点】中心天体质量的计算
【课前预习】
1.地球上的物体具有的重力是由于 ( http: / / www.21cnjy.com ) 而产生的,若不考虑地球自转的影响,地面上的物体所受的重力等于物体受到的 。所以我们只需测出 和地球表面的 即可求地球的质量。
2.计算中心天体的质量,首先观测围绕中心天 ( http: / / www.21cnjy.com )体运动的 r和 ,然后根据万有引力提供 由牛顿第二定律列出方程,求得中心天体的质量M= 。
3.海王星是在 年 月 日德国的伽勒在勒维耶预言的位置附近发现的,发现的过程是:发现 的实际运动轨道与 的轨道总有一些偏差,根据观察到的偏差数据和万有引力定律计算出 ,并预测可能出现的时刻和位置;在预测的时间去观察预测的位置。海王星的发现最终确立了 也成为科学史上的美谈。
[堂中互动]
[问题探究1] 科学真实迷人
[教师点拨] 万有引力的发现,给天文学的研究开辟了一条康庄大道。自从卡文迪许测出了引力常数G并且知道重力加速度g值之后,可以应用万有引力定律“称量”地球的质量,所以卡文迪许宣布他的实验是在“称量地球”。 物体m在纬度为θ的位置,万有引力指向地心,分解为两个分力:m随地球自转围绕地轴运动的向心力和重力。因为向心力远小于重力,万有引力大小近似等于重力。因此不考虑(忽略)地球自转的影响,
地球质量:
例1.已知地面附近的重力加速度g=9.8m/s2,地球半径
R =6.4×106m,引力常量G=6.67×10-11Nm2/kg2,试估算地球的质量。
【解析】由于地球自转非常慢,一天只转了一圈,所以对应的自转偏向力很小。在这里,我们忽略不计。
【拓展】 某物体在地面上受到的重力为160N,将它放置在卫星中,在卫星以的加速度随火箭向上加速升空的过程中,当物体与卫星中的支持物,相互挤压力为90N时,卫星距地球表面有多远 (地球半径,g取10m/s2)
【思路分析】重力加速度与高度的变化:若物体静止在距离地面高为h的高空
卫星在升空过程中可以认为是竖直向上做匀加速直线运动,设卫星离地面为h,然后根据万有引力定律求解。
这时受到地球的万有引力为G
在地球表面=mg ①
在上升至地面h时
=ma ②
由①②得=
H=(-1)R地
代入数据得h=1.92×104km
[问题探究2] 计算天体的质量
[教师点拨]
有了G的数值,我们可以用同样的方法去“测量太阳的质量”。
设M为太阳(或某一天体)的 ( http: / / www.21cnjy.com )质量,m是行星(或某一卫星)的质量,r是行星(或卫星)的轨道半径,T是行星(或卫星)绕太阳(或天体)公转的周期,有:
而行星运动的向心力由万有引力提供,
例2. “嫦娥奔月”工程中我国发射的“嫦娥一号”卫星成功进入近月轨道.已知此卫星绕月球飞行一圈的时间为t.试据此求出月球的平均密度. (引力常量G已知)
( http: / / www.21cnjy.com )
【拓展】 宇宙飞船进入一个围绕太阳的近乎圆形的轨道运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( )
A.3年 B.9年 C.27年 D.81年
[问题探究3] 发现未知天体?
[教师点拨]万有引力对研究天体运动有着 ( http: / / www.21cnjy.com )重要的意义.海王星、冥王星就是这样发现的.请同学们推导:已知中心天体的质量及绕其运动的行星的运动情况,在太阳系中,行星绕太阳运动的半径r为:?
根据F万有引力=F向=, 而F万有引力=,
两式联立得:?
在18世纪发现的第七个行星——天王 ( http: / / www.21cnjy.com )星的运动轨道,总是同根据万有引力定律计算出来的有一定偏离.当时有人预测,肯定在其轨道外还有一颗未发现的新星.后来,亚当斯和勒维列在预言位置的附近找到了这颗新星.后来,科学家利用这一原理还发现了许多行星的卫星,由此可见,万有引力定律在天文学上的应用,有极为重要的意义.?
例3.已知地球半径约为6.4×10 ( http: / / www.21cnjy.com )6 m,又知月球绕地球的运动可近似看做圆周运动,则可估算出月球到地心的距离为________m.(结果保留一位有效数字)
【解析】地球对月球的万有引力提供月球绕地球运转所需的向心力,月球绕地球运转的周期为27天,即
   ①
            ②
  
  
答案:4×108
【拓展】经天文学家观察,太阳在绕着银河系中心 ( http: / / www.21cnjy.com )(银心)的圆形轨道上运行,这个轨道半径为3×104光年(约等于2.8×1020m),转动一周的周期约为2亿年(约等于6.3×1015s).太阳做圆周运动的向心力是来自位于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看作集中在银河系中心来处理问题.(G=6.67×10-11N·m2/kg2)
从给出的数据来计算太阳轨道内侧这些星体的总质量.
【解析】假设太阳轨道内侧这些星球的总质量为M,太阳的质量为m,轨道半径为r,周期为T,太阳做圆周运动的向心力来自于这些星体的引力。
=mr
故这些星体的总质量为
M==kg =3.3×1041kg.
【课堂练习】
1. 天文学家发现某恒星周围有一颗行星在圆形轨道上绕其运动,并测出了行星的轨道半径和运行周期,由此可推算出( )
A.行星的质量 B.行星的半径 C.恒星的质量 D.恒星的半径
2.宇宙飞船进入一个围绕太阳的近乎圆形的轨道运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( )
A.3年 B.9年 C.27年 D.81年
3.假设太阳系中天体的密度 ( http: / / www.21cnjy.com )不变,天体直径和天体之间距离都缩小到原来的一半,地球绕太阳公转近似为匀速圆周运动,则下列物理量变化正确的是( )
A.地球的向心力变为缩小前的一半 B.地球的向心力变为缩小前的 1/16
C.地球绕太阳公转周期与缩小前的相同 D.地球绕太阳公转周期变为缩小前的一半
4.若人造卫星绕地球做匀速圆周运动,则下列说法正确的是( )
A.卫星的轨道半径越大,它的运行速度越大
B.卫星的轨道半径越大,它的运行速度越小
C.卫星的质量一定时,轨道半径越大,它需要的向心力越大
D.卫星的质量一定时,轨道半径越大,它需要的向心力越小
5.下列说法正确的是( )
A.海王星是人们直接应用万有引力定律计算的轨道而发现的
B.天王星是人们依据万有引力定律计算的轨道而发现的
C.海王星是人们经过长期的太空观测而发现的[来源:教|改|先锋*网]
D.天王星的运行轨道与由万有引力定律计算的轨道存在偏差,其原因是天王星受到轨道外的行星的引力作用,由此,人们发现了海王星
6.若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T,引力常量为G,那么该行星的平均密度为( )
7.某行星绕太阳运动可近 ( http: / / www.21cnjy.com )似看做匀速圆周运动,已知行星运动的轨道半径为R,周期为T,万有引力恒量为G,则该行星的线速度大小为多大 太阳的质量为多少
8.土星周围有许多大小不等的岩石颗粒, ( http: / / www.21cnjy.com )其绕土星的运动可视为圆周运动,其中有两个岩石颗粒A和B与土星中心的距离分别为rA=8.0×104 km和rB=1.2×105 km.忽略所有岩石颗粒间的相互作用.(结果可用根式表式)
(1)求岩石颗粒A和B的线速度之比.
(2)土星探测器上有一物体,在地球上重为10 N,推算出它在距土星中心3.2×105 km处受到土星的引力为 0.38 N.已知地球半径为6.4×103 km,请估算土星质量是地球质量的多少倍?
6.4 《万有引力理论的成就》
【课前预习】
1.地球的吸引;地球的万有引力;地球半径;重力加速度
2.星球的轨道半径;运动周期T;向心力;
3.1846; 9; 23; 天王星;根据万有引力定律计算出来;这颗“新”行星的运行轨道;万有引力定律的地位
R
M
G
θ
m
w
r
F

F

kg
kg

得:
即:




F =mrω2=mr ( )2
即:F引= 得 : M=
【思路分析】
答案: C
r =
代入数据得r =
=4×108 m
又已知 T=27×24×3600 s
由①、②两式可得: