登陆21世纪教育 助您教考全无忧
1教学目标
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
2学情分析
从心理特征来说,初中阶段的学生逻辑思维从经验型逐渐像理论型发展,观察能力、记忆能力和想象能力也随着迅速的发展。同时,这一阶段的学生好动,注意力易分散,所以在教学中应抓住这一特点,一方面运用直观生动的形象,引发学生的兴趣,一方面,要创造条件和机会,使他们的注意力始终集中在课堂上。
从学生的知识技能基础来看,在之前学习过变量、函数等概念,对一次函数、反比例函数也有所理解。在这些基础上,对于学习二次函数都是很好的铺垫性知识。
从学生活动经验基础来看,在相关的知识学习的过程中,学生已经具有解决一些实际问题的能力,感受到了函数反映的是变化的过程,对函数的表达方式特点也有所了解。获得了探究新的函数知识的基础;同时,在以前的学习中学生经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作交流能力。
3重点难点
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
4教学过程
4.1 第一学时
教学活动
活动1【导入】教学过程
教学过程:
一、试一试
1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,
AB长x(m)
1
2
3
4
5
6
7
8
9
BC长(m)12
面积y(m2)48
2.x的值是否可以任意取 有限定范围吗
3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,
对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想 让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m (2)面积y等于多少 并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.
二、提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大
在这个问题中,可提出如下问题供学生思考并回答:
1.商品的利润与售价、进价以及销售量之间有什么关系
[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元 一天总的利润是多少元
[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元 一天可销售约多少件商品
[(10-8-x);(100+100x)]
4.x的值是否可以任意取 如果不能任意取,请求出它的范围,
[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。
[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0<x<10=化为:
y=-2x2+20x(0<x<10)……………………………(1)
将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:
y=-100x2+100x+20D(0≤x≤2)……………………(2)
三、观察;概括
1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;
(1)函数关系式(1)和(2)的自变量各有几个
(各有1个)
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式
(分别是二次多项式)
(3)函数关系式(1)和(2)有什么共同特点
(都是用自变量的二次多项式来表示的)
(4)本章导图中的问题以及P1页的问题2有什么共同特点?
让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。
2.二次函数定义:形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
四、课堂练习
1.(口答)下列函数中,哪些是二次函数
(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2.P3练习第1,2题。
五、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
六、作业:略
1教学目标
了解关于天才的话题。
明确天才出现的原因。
2学情分析3重点难点4教学过程
4.1 第一学时教学目标
学时重点
学时难点教学活动
4.2 第二学时教学目标
学时重点
学时难点教学活动
4.3 第三学时教学目标
学时重点
学时难点教学活动
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品资料·第 3 页 (共 3 页) 版权所有@21世纪教育网