数学活动 配套教学设计(85)

文档属性

名称 数学活动 配套教学设计(85)
格式 doc
文件大小 32.5KB
资源类型 素材
版本资源 人教版(新课程标准)
科目 数学
更新时间 2016-02-17 14:46:33

文档简介

登陆21世纪教育 助您教考全无忧
1教学目标
1.理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算。
2.经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。
3.通过联系和运动发展的观点,渗透辩证唯物主义思想方法。
2学情分析
,这节课是学生在前阶段学完了 “圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的拓展与延伸,为学习下节课圆锥的侧面积做准备。本节课从特殊到一般探索弧长及扇形面积公式,并运用公式解决一些具体问题,为学生的学习及生活更好地运用数学作准备。在学习中,注重了知识的形成过程,以及数学方法的渗透。 >1.理解弧长公式和扇形面积公式的推导过程,掌握公式并能正确、熟练的运用两个公式进行相关计算。
2.经历用类比、联想的方法探索公式推导过程,培养学生的数学应用意识,分析问题和解决问题的能力。
3.通过联系和运动发展的观点,渗透辩证唯物主义思想方法。
3重点难点
1.弧长和扇形面积公式,准确计算弧长和扇形的面积。
2.运用弧长和扇形的面积公式计算比较复杂图形的面积。
4教学过程
4.1 第一学时
教学活动
活动1【讲授】《弧长与扇形的面积》
一、创设情景: 如图,一根 3米 长的绳子,
一端栓在柱子上,另一端栓着一只羊,
羊的活动最大区域面积 。
二、出示学习目标
1.认识扇形,理解推导弧长和扇形面积计算公式的过程。
2.会用公式计算和解决相关的问题。
三、探究思考一
(1)半径为R的圆,周长是多少?
(2)圆的周长可以看作是多少度的圆心角所对的弧?
(3)1°圆心角所对弧长是多少?
若设⊙O半径为R, n°的圆心角所对的弧长L ,则 L= 。
弧长公式:
例1:已知圆弧的半径为50厘米,圆心角为60°,则
圆弧的长度是多少?
随堂练习:
(1)已知半径为3,则弧长为π的弧所对的圆心角为 。 (2)已知圆心角为150°,所对的弧长为20π,则圆的半径为 。 四、探究思考二
扇形定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫扇形。
(1)半径为R的圆,面积是多少?
(2)圆面可以看作是多少度的圆心角所对的扇形?
(3)1°圆心角所对扇形面积是多少?
若设⊙O半径为R, n°的圆心角所对的扇形面积为S,则 S=_______
扇形面积公式:
弧长于扇形面积关系:
例2:已知半径为2cm的扇形,其弧长为 cm,则这个扇形的面积,S扇=____。
练习:如图、水平放置的圆柱形
排水管道的截面半径是6cm,其
中水面高3cm,求截面上有水部
分的面积。
五、点击中考
⊙A, ⊙B, ⊙C两两不相交,且半径都是1cm,则图中的三个扇形的面积之和为多少 弧长的和为多少
七、课堂提升
解决课前提出的问题(羊吃草的问题)
八、课堂小结
九、作业设计
课后反思:
1教学目标
了解关于天才的话题。
明确天才出现的原因。
2学情分析3重点难点4教学过程
4.1 第一学时教学目标
学时重点
学时难点教学活动
4.2 第二学时教学目标
学时重点
学时难点教学活动
4.3 第三学时教学目标
学时重点
学时难点教学活动
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网 www.21cnjy.com 精品资料·第 2 页 (共 3 页) 版权所有@21世纪教育网