(共22张PPT)
人教版义务教育教科书 五年级 上册
植 树 问 题
猜谜语
两棵小树十个杈,
不长叶子不开花,
能写会算还会画,
天天干活不说话。
间隔
需要准备多少棵树?
全长
间距
间隔
100米
5米
···
···
种树方法:
①两端都栽
②只栽一端
③两端都不栽
①两端都栽
在全长100米的小路一边植树,每隔5米栽一棵
(两端都栽)。一共需要多少棵树?
100米
5米
5米
5米
5米
5米
……
在全长100米的小路一边植树,每隔5米栽一棵
(两端都栽)。一共需要多少棵树?
要求:
1、独立画图、列式计算。
2、做完题目,同桌交流。
20米
化繁为简
在全长100米的小路一边植树,每隔5米栽一棵
(两端都栽)。一共需要多少棵树?
20米
5米
20米
棵数: 4+1=5(棵)
间隔数: 20÷5=4(个)
1
2
3
4
5
答:一共需要5棵树。
全长÷间距=间隔数
猜想:棵树=间隔数+1
请同学们画一画、算一算、说一说
棵数与间隔数之间有什么关系?
全长 (米) 间距 (米) 画图(两端都栽) 间隔数 棵数
15 5
25 5
35 5
请同学们画一画、算一算、说一说
全长 (米) 间距 (米) 画图(两端都栽) 间隔数 棵数
15 5 3 4
25 5 5 6
35 5 7 8
1
2
3
4
6
1
2
3
4
5
1
2
3
4
5
6
7
8
棵数 = 间隔数+1
两端都栽
例1:在全长100米的小路一边植树,每隔5米栽一棵
(两端都栽)。一共需要多少棵树?
棵数: 20+1=21(棵)
间隔数:100÷5=20(个)
答:一共需要21棵树。
请同学们画一画、算一算、说一说
全长 (米) 间距 (米) 画图 间隔数 棵数
15 5
25 5
35 5
(只栽一端)
请同学们画一画、算一算、说一说
全长 (米) 间距 (米) 画图 间隔数 棵数
15 5 3 3
25 5 5 5
35 5 7 7
棵数 = 间隔数
只栽一端
(只栽一端)
请同学们画一画、算一算、说一说
全长 (米) 间距 (米) 画图 间隔数 棵数
15 5
25 5
35 5
(两端都不栽)
请同学们画一画、算一算、说一说
全长 (米) 间距 (米) 画图 间隔数 棵数
15 5 3 2
25 5 5 4
35 5 7 6
棵数 = 间隔数-1
两端都不栽
(两端都不栽)
1. 校门口有一条35m的小路,学校要在路的一旁摆花盆。每隔5m摆一盆(一端摆一端不摆)。一共要摆多少盆?
答:一共要栽7棵。
35 ÷5=7(棵)
2. 在一条全长2000米的街道的一旁安装路灯(两端都要安装),每隔50m安装一盏。一共要安装多少盏路灯?
答:一共要安装41盏路灯。
间隔数:2000 ÷50=40(个)
盏数: 40+1=41(盏)
3. 大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?(书本P105)
棵数:20-1=19(棵)
间隔数:60÷3=20(个)
答:一共需要38棵树。
19×2=38(棵)
元旦即将来临,学校打算在全长为30米的大舞台摆放盆栽,请同学们利用刚刚所学的知识,填上合适的数据,并计算所需的盆数。
间距( )米,如何摆放( ),需要摆( )盆
这节课你有什么收获?
课后作业:
请同学们利用今天所学的内容,自编一道生活中的植树问题,并解决问题。课题 《植树问题》 课型 新授课
教学内容: 人教版义务教育教科书数学五年级上册第106-107页例1、例2及相关练习。
课标摘录: 在具体的情境中,了解常见的数量关系:全长÷间距=间隔数等,并能解决简单的实际问题。
课标解读: 注重概念的建立,关注由具体到抽象、由特殊到一般的概括、归纳过程。 加强对概念间相互关系的梳理,促进学生从本质上理解与记忆概念。 给予学生独立思考、交流合作的机会,让学生经历探究、发现、总结的完整过程。 处理好概念教学的阶段性与连续性的关系。
教材分析: 《植树问题》是人教版五年级上册第七单元的内容,教学内容是教学解决植树问题的方法。 “植树问题”是实际生活中应用比较广泛,它通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本单元讲的是有关植树问题的一些思想方法,通过学生的动手操作、自主探究来发现现实生活中它们的规律,抽取出其中的数学模型,然后再用规律解决问题。
学情分析: “植树问题”是“数学广角”这个单元的内容。主要向学生渗透一些重要的数学思想方法。教学时通过现实生活中一些常见的实际问题,让学生从中发现规律,然后再用发现的规律来解决生活中一些简单的实际问题。
设计理念: 《课标》上指出:要重视学生在学习中的主体地位,学生时数学学习的主体,在积极参与学习的过程中不断得到发展。学生获得知识,必须时建立在自己思考的基础上,通过自主探究的方式。学生应用知识并逐步形成技能,离不开自己的实践。教师则要选择恰当的教学方式因势利导,适时调节,努力营造师生互动,生生互动的活泼的课堂氛围,形成有效的学习活动。基于这样的思想,我设计了整节课学生都是在猜测、探究、发现的过程中推到出棵数与间隔数之间的关系,使学生进一步积累数学活动经验,经历数学化的过程,获得解决问题的方法。
教学目标: 知识与技能: 通过合作探究,让学生在经历由现实问题到构建数学模型的过程中,理解并掌握不封闭路线中植树棵树与间隔数之间的关系。 过程与方法: 通过学生自主探究、交流、发现规律的过程,培养学生动手操作、自主探究、合作交流的能力,使学生掌握数形结合解决问题的方法。 情感态度与价值观: 让学生在探索、构建模型、使用模型的过程中体验到成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索和归纳规律的意识,体会数形结合的思想。
教学重、难点: 重点:探究发现植树问题的规律,理解棵数与间隔数的关系,掌握解决植树问题的方法。 难点:应用植树问题的模型解决同类型的问题。
教学准备: 课件、尺子、学习单、相关教具等。
教学过程
教学 环节 教学内容 设计意图
谜 语 导 入 师:在上课之前,老师来给同学们出一个谜语,看同学们能不能猜出来。 (出示谜语:两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。) 预设学生答案:手 师:同学们都很聪明!就是我们的手(出示课件),我们一只手有几根手指呀? 预设学生答案:5根 师:手指与手指之间有一个间隔,我们一起来数一数一只手有几个间隔?(4个) 师:有关间隔的问题在我们生活中随处可见,下面请同学们举一下与间隔有关的例子。 预设学生答案:树木之间有间隔、房屋间有间隔、路灯之间有间隔、盆栽间有间隔、排队有间隔、桌子摆放有间隔。 师:(出示课件)像这种与间隔有关的问题,我们称之为植树问题,今天我们一起来研究植树问题。(板书) 用猜谜语的形式引入课题,提高学生的兴趣,吸引学生的注意力。以感悟间隔的含义为植树问题的教提供切入点,为植树问题的学习打下良好的基础。
探 究 新 知 1. 大胆猜测,引发冲突 师:(出示课件)现在同学们在小路一边植树,如果要求“需要准备多少棵树”,需要知道什么信息? 预设:①树与树之间间隔多少米? ②这条路有多长? ③怎么栽树? 师:①树与树之间有一个间隔,这个间隔的长度,我们把它叫做间距,我们这里的间距为5米。②这条路有100米。 ⑤两端都栽、只栽一端、两端都不栽 师:同学们真棒,把所有条件都找齐了,那么我们一起来解决问题吧。 师:(出示课件)在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要多少棵树? 师:我们先来解决两端都栽的问题。 师:请同学们猜想一下,一共需要多少棵树? 预设学生答案:20棵、21棵、22棵 师:那我们一起来验证我们的猜想吧。 师:用一条线段表示一条全长100米的小路,然后用相同的长度表示5米,5米一个间隔、5米一个间隔、5米一个间隔……,我们发现什么? 预设学生答案:100米太长了,需要画很多个间隔。 师:数据太大研究起来不方便,那我们可以怎么办? 预设学生答案:我们可以先用简单的数试试。 师:这种方法在数学上我们称之为“化繁为简”(板书),那老师就听你们的意见,把100米改成20米。 师:请同学们在学习单上画一画、算一算,写完以后同桌相互交流一下。 2. 操作演示,发现规律 师:请一位同学说说你的想法。 [教学预设](学生上台讲解思路)(展示错例,让学生正面面对自己的错误) 20÷5=4(个),4+1=5(棵) (学生边说教师边板书写式子) 师:同学们说得非常好,刚才这位同学第一步用除法计算,为什么要用除法呢? 预设学生答案:因为题目要求平均分,所以用除法。 师:那第一步先求的是什么呢? 预设学生答案:间隔数 师:对啦,我们可以用全长÷间距=间隔数,先求出间隔数。再来求棵数,那么树应该栽在哪里呢?下面请一个同学上来指一指。 师:这位同学把树种在哪里呀?对啦,把树种在点子上。我们再一次数一数有多少个点,有多少个点也就是要栽多少棵树。 师:也就是说,在两端都栽的情况下,棵数比间隔数多1。 (先画图,再数间隔数和棵数) 师:但是我们研究数学问题,单凭一个例子肯定是不够的,请同学们用相同的方法完成下表,想一想间隔数和棵数之间有什么关系。 [教学预设](找2个学生上台说一说他发现的规律) 师:还有同学想要上来展示的吗? 师:所以我们可以得出结论:两端都栽的情况下,棵数=间隔数+1(板书) 师:(出示课件)现在请同学们运用规律解决例1,请同学们在学习单上写下你的答案吧。 例1:在全长100米的小路一边植树,每隔5米栽一棵(两端都栽)。一共需要多少棵树? [教学预设](学生回答) 100÷5=20(个) 20+1=21(棵) 三、知识迁移,学习例2 师:(出示课件)同学们在植树的过程中发现,路的一端有一间房子,像这样,这时又该栽几棵树呢? 预设学生答案:3棵。 师:为什么呢?你能说说原因吗? 预设学生答案:因为这种情况下,路的一端被挡住了,只能选择一端栽一端不栽,所以只能栽三棵。 师:同学们回答得真好!我们把这种情况叫做只栽一端,那如果是路的这端被挡住了,那应该栽几棵树呢? 预设学生答案:5棵。 师:那第三组数据呢? 预设学生答案:7棵。 师:我们一起来观察间隔数和棵数,只栽一端的情况下,棵数与间隔数之间有什么关系呢? 预设学生答案:棵数=间隔数 师:对啦(板书),也就是说我们要求棵数,只需要把什么求出来就可以啦? 预设学生答案:间隔数 师:那如果路的两端都有一间房子,像这样,这时又该栽几棵树呢? 预设学生答案:2棵。 师:为什么呢?你能说说原因吗? 预设学生答案:因为这种情况下,路的两端被挡住了,只能选择两端都不栽,所以只能栽2棵。 师:同学们回答得真好!我们把这种情况叫做两端都不栽,那我们看第二组数据应该栽几棵树呢? 预设学生答案:4棵。 师:那第三组数据呢? 预设学生答案:6棵。 师:我们一起来观察间隔数和棵数,两端都不栽的情况下,棵数与间隔数之间有什么关系呢? 预设学生答案:棵数=间隔数-1 教学例2:大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树? [教学预设](学生讲解思路) 60÷3=20(个) 20-1=19(棵) 19×2=38(棵) 通过自主探究培养学生发现问题和解决问题的能力,提高学生解决问题的能力。
熟 悉 模 型 , 巩 固 提 升 1.校门口有一条35m的小路,学校要在路的一旁摆花盆。每隔5m摆一盆(一端摆一端不摆)。一共要摆多少盆? 2.在一条全长2000米的街道的一旁安装路灯(两端都要安装),每隔50m安装一盏。一共要安装多少盏路灯? 3.大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树? 4.我是小小设计师 元旦即将来临,学校打算在全长为30米的大舞台摆放盆栽,请同学们利用刚刚所学的知识,填上合适的数据,并计算盆数。 间距( )米,如何摆放( ),需要摆( )盆 引导学生通过练习提高发现问题和解决问题的能力,培养学生的数学意识,体验数学知识的应用价值。
课 堂 小 结 师:同学们,这节课你有什么收获?
课 后 作 业 请同学们利用今天所学的内容,自编一道生活中的植树问题,并解决问题。
板书设计: 植树问题 化繁为简 全长÷间距=间隔数 20÷5=4(个),4+1=5(棵) 两端都栽 棵数=间隔数+1 只栽一端 棵数=间隔数 两端都不栽 棵数=间隔数-1