华师大版数学八年级下册19.3 正方形 课件(共26张PPT)

文档属性

名称 华师大版数学八年级下册19.3 正方形 课件(共26张PPT)
格式 pptx
文件大小 1.1MB
资源类型 教案
版本资源 华师大版
科目 数学
更新时间 2024-10-12 22:18:59

图片预览

文档简介

(共26张PPT)
19.3 正方形
第19章 矩形、菱形和正方形
学习目标
1.探索并证明正方形的性质,并了解平行四边形、
矩形、菱形之间的联系和区别;(重、难点)
2.探索并证明正方形的判定;(重、难点)
3.会运用正方形的性质及判定条件进行有关的论证
和计算 . (难点)
《正方形的性质与判定》
导入新课
观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.
情景引入
你还能举出其他的例子吗?
导入新课
讲授新课
矩 形


问题1:矩形怎样变化后就成了正方形呢 你有什么
发现?
问题引入
正方形的性质

正方形
讲授新课
问题2 菱形怎样变化后就成了正方形呢 你有什么
发现?
正方形
问题发现
邻边相等
矩形


正方形


菱 形
一个角是直角
正方形

正方形定义:
1、 有一组邻边相等的矩形是正方形;
2、有一个角是直角的菱形叫正方形;
归纳总结
的矩形
的菱 形
例1.已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,AC⊥BD.
A
B
C
D
O
证明:∵正方形ABCD是矩形,
∴AO=BO=CO=DO.
∵正方形ABCD是菱形.
∴AC⊥BD.
矩形
菱形



平行四边形
正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形具有的性质,正方形都具有.
平行四边形、矩形、菱形、正方形之间关系:
性质:1.边:四条边相等,两组对边分别平行.
2.角:正方形的四个角都是直角.
3.对角线:正方形的对角线互相垂直平分且相等..
归纳总结
1、正方形是中心对称图形,对角线的交点是它的对称中心.
2、 正方形是轴对称图形,两条对角线所在直线直线,以及过每一组对边中点连线所在的直线都是它的对称轴.共4条对称轴。
由于正方形既是菱形,又是矩形,因此:
知识要点
A
B
C
D
正方形的对称性
例2 如图,在正方形ABCD中, ΔBEC是等边三角形,
求证: ∠EAD=∠EDA=15° .
证明:∵ ΔBEC是等边三角形,
∴BE=CE=BC,∠EBC=∠ECB=60°,
∵ 四边形ABCD是正方形,
∴AB=BC=CD,∠ABC=∠DCB=90°,
∴AB=BE=CE=CD, ∠ABE= ∠DCE=30°,
∴△ABE,△DCE是等腰三角形,
∴∠BAE= ∠BEA= ∠CDE= ∠CED=75°,
∴∠EAD= ∠EDA=90°-75°=15°.
【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.
解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°.
∴∠AEB=15°.
同理可得∠DEC=15°.
∴∠BEC=60°-15°-15°=30°;
当等边△ADE在正方形ABCD内部时,如图②,
AB=AE,∠BAE=90°-60°=30°,
∴∠AEB=75°.
同理可得∠DEC=75°.
∴∠BEC=360°-75°-75°-60°=150°.
综上所述,∠BEC的大小为30°或150°.
易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.
1.正方形具有而矩形不一定具有的性质是 ( )
A.四个角相等
B.对角线互相垂直平分
C.对角互补
D.对角线相等
2.正方形具有而菱形不一定具有的性质( )
A.四条边相等
B.对角线互相垂直平分
C.对角线平分一组对角
D.对角线相等
B
D
练一练
2.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,求正方形的周长与面积.
解:∵四边形ABCD是正方形,
∴AC⊥BD,OA=OD=2.
在Rt△AOD中,由勾股定理,得
∴正方形的周长为4AD= ,
面积为AD2=8.
正方形判定:
正方形
正方形
先判定矩形
菱形条件(二选一)
有一个角是直角
反过来我们可以得到正方形的判定方法
平行四边形
正方形
对角线互相垂直平分且相等
一组领边相等
在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
A.AC=BD,AB∥CD,AB=CD
B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD
D.AO=CO,BO=DO,AB=BC
练一练
C
A
B
C
D
O
例4 在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN.四边形EFMN是正方形吗 为什么
解:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.
∵AE=BF=CM=DN,
∴AN=BE=CF=DM.
分析:由已知可证△AEN≌△BFE≌
△CMF≌△DNM,得四边形EFMN是菱形,再证有一个角是直角即可.
在△AEN、△BFE、△CMF、△DNM中,
AE=BF=CM=DN,
∠A=∠B=∠C=∠D,
AN=BE=CF=DM,
∴△AEN≌△BFE≌△CMF≌△DNM,
∴EN=FE=MF=NM,∠ANE=∠BEF,
∴四边形EFMN是菱形,
∠NEF=180°-(∠AEN+∠BEF)
=180°-(∠AEN+∠ANE)
=180°-90°=90°.
∴四边形EFMN是正方形 .
证明:∵ DE⊥AC,DF⊥AB ,
∴∠DEC= ∠DFC=90°.
又∵ ∠C=90 °,
∴四边形EDFC是矩形.
过点D作DG⊥AB,垂足为G.
∵AD是∠CAB的平分线
DE⊥AC,DG⊥AB,
∴ DE=DG.
同理得DG=DF,
∴ED=DF,
∴矩形EDFC是正方形.
例5 如图,在直角三角形中,∠C=90°,∠A、∠B的平分线交于点D.DE⊥AC,DF⊥AB.求证:四边形CEDF为正方形.
A
B
C
D
E
F
G
(2)解:当点E运动到AC的中点时四边形AFBE是正方形,
理由:∵点E运动到AC的中点,AB=BC,
∴BE⊥AC,BE=AE= AC,
∵AF=AE,
∴BE=AF=AE.
又∵BE⊥AC,∠FAE=∠BEC=90°,
∴BE∥AF,
∵BE=AF,
∴四边形AFBE为平行四边形,
∵∠FAE=90°,AF=AE,∴平行四边形AFBE是正方形.
2.一个正方形的对角线长为2cm,则它的面积是
(  )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
A
1.平行四边形、矩形、菱形、正方形都具有的是( )
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.对角线互相垂直且相等
A
当堂练习
3.在正方形ABCD中,∠ADB= ,∠DAC= , ∠BOC= .
4.在正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠EBC的度数是 .
A
D
B
C
O
A
D
B
C
O
E
45°
90°
22.5°
第3题图
第4题图
45°
5. 如图,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.
解:BE=DF,且BE⊥DF.理由如下:
∵四边形ABCD是正方形.
∴BC=DC,∠BCE =90° .
∴∠DCF=180°-∠BCE=90°.
∴∠BCE=∠DCF.
又∵CE=CF.
∴△BCE≌△DCF.
∴BE=DF.
A
B
D
C
F
E
延长BE交DF于点M,
∵△BCE≌△DCF ,
∴∠CBE =∠CDF.
∵∠DCF =90° ,
∴∠CDF +∠F =90°,
∴∠CBE+∠F=90° ,
∴∠BMF=90°.
∴BE⊥DF.
A
B
D
F
E
C
M
课堂小结
1.四个角都是直角
2.四条边都相等
3.对角线相等且互相垂直平分
正方形的性质
性质
定义
有一组邻相等,并且有一个角是直角的平行四边形叫做正方形.
课堂小结
5种判定方法
三个角是直角
四条边相等
一个角是直角
或对角线相等
一组邻边相等
或对角线垂直
一组邻边相等
或对角线垂直
一个角是直角
或对角线相等
一个角是直角且一组邻边相等
平行四边形、矩形、菱形、正方形的判定小结