本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
高三第一轮复习教案-《同角三角函数关系和诱导公式》
掌握同角三角函数间的三个基本关系和诱导公式,能用同角三角函数关系和诱导公式
进行化简和计算。
二、【考点回顾】
1. 诱导公式:
(1)角的关系:若为锐角,则2kπ+∈ ;π-∈ ;π+∈ ;2π-或-∈ ;
; ; ; .
(2)诱导公式可概括为: . (注意:公式中始终视为锐角)
2.同角三角函数的基本关系:
(1)平方关系: ;(2)倒数关系: ;(3)商数关系: .
三、【典型例题】
例1.求下列各三角函数的值:
(1); (2) .
[小结1] 利用诱导公式化简三角函数的一般步骤:
①负角化正角:用“ ”公式或三角函数的奇偶性;
②大角化小角:用“2k + ”公式或三角函数的周期性;
③小角化锐角:用“±”或“2 ”公式.
例2.化简:
(1); (2).
[小结2] 互余两角的三角函数关系:
①正余弦之间的关系:;
②正余切之间的关系:.
例3.(07全国Ⅰ)是第四象限角,,则( )
A. B. C. D.
[小结3]锐角三角函数之间的关系:
若为锐角,且,则;.
例4.已知,求下列各式的值:
(1); (2);
(3); (4).
变式1:已知,求;的值;
变式2:已知,求的值.
[小结4] 常用于改变三角函数名的转换公式:
①正余弦的转换公式:;;;
②正余切的转换公式:;;;
③切化弦: ;;;
④弦化切:正余弦的齐次分式,或齐二次式可以化切.
例5.已知,,
(1)求; (2)求.
[小结5] 正余弦的和、差、积之间的关系:.
四、【高考链接】
(2008福建文4)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(-a)的值为(B)
A.3 B.0 C.-1 D.-2
(2008福建文7)函数y=cosx(x∈R)的图象向左平移个单位后,得到函数y=g(x)的图象,则g(x)的解析式为 ( A )
A.-sinx B.sinx C.-cosx D.cosx
(2008福建文8)在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2 =ac,则角B的值为 ( A )
A. B. C. D.
(2008福建文17)已知向量,且.
(Ⅰ)求tanA的值; (Ⅱ)求函数R)的值域.
四、【课后巩固】 课本第63页[基础强化训练]
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网