课件12张PPT。算法1.1.1算法的概念答:分三步:第一步:打开冰箱门第二步:把大象装冰箱第三步:把冰箱门关上问: 要把大象装冰箱,分几步?一、问题情境1、小品“钟点工”片段2、现有九枚硬币,有一枚略重,你能用天平(不用砝码)
将其找出来吗?设计一种方法,解决这一问题.一、问题情境第一步:把九枚硬币平均分成三份,取其中两份放天平上称,若平衡则重的在剩下的一份里,若不平衡则在重的一份里; 第二步:在重的一份里取两枚放天平的两边,若平衡则剩下的一枚就是所找的,若不平衡则重的那枚就是所要找的。3、猜商品价格:第一步 报4000;第二步 若正确,就结束,若高了,则报2000.
若低了,则报6000;第三步 重复第二步的报数方法,直到得出正确结果.一、问题情境 一商品价格在0~8000元之间,问竞猜者采取什
么策略才能在较短时间内猜出商品价格?解:第一步,由①得x=2y-1;③第二步,将③代入②解得y=3/5 ; ④思考:对于一般的二元一次方程组来说,上述步骤应该怎样进一步完善? 问题一:第三步, 将④ 代入③ ,解得x=1/5. 算法的含义(广义)完成某项工作的方法和步骤(现代)可以用计算机来解决的一类问题的程序和步骤.(教材)在数学中,算法通常是按照一定规则解决
某一类问题的明确和有限的步骤.(1)程序性;(2)明确性;(3)有限性;算法的特点例1:设计一个算法,判断7是否为质数。算法:第一步,用2除7,得到余数1。因为余数不为0,所以2不能整除7。第二步,用3除7,得到余数1。因为余数不为0,所以3不能整除7。第三步,用4除7,得到余数3。因为余数不为0,所以4不能整除7。第四步,用5除7,得到余数2。因为余数不为0,所以5不能整除7。第五步,用6除7,得到余数1。因为余数不为0,所以6不能整除7。因此,7是质数。35?例2:设计一个算法,判断53是否为质数。第一步,用2除53,得到余数1。因为余数不为0,所以2不能整除53。第二步,用3除53,得到余数2。因为余数不为0,所以3不能整除53。第三步,用4除53,得到余数1。因为余数不为0,所以4不能整除53。……第五十一步,用52除53,得到余数1。因为余数不为0,所以52不能整除53。因此,53是质数。不是算法算法分析:根据质数的定义,很容易设计出下面的步骤:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。第二步:令i=2。例3 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。第三步:用i除n,得到余数是r。第四步:判断r是否为0,若是,则n不是质数;否则,将i的值增加1,仍用i表示。 第五步:判断i>(n-1)是否成立。若是,则n是质数,结束算法;否则,返回第三步。例4: 用二分法设计一个求方程x2–2=0的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:
第一步:令f(x)=x2–2。因为f(1)<0,f(2)>0,所以a=1,b=2。第二步:令m=(a+b)/2,判断f(m)是否为0,若是,则m为所求;若否,则继续判断f(a)·f(m)大于0还是小于0。第三步:若f(a)·f(m)>0,则令a=m;否则,令b=m。第四步:判断|a–b|<0.005是否成立?若是,则a、b之间的任意取值均为满足条件的近似根;若否,则返回第二步。小结1、算法的含义。2、算法的特征。3、解二元一次方程组的算法、判断n是否是质数的算法、用二分法求方程的近似解的算法。课件17张PPT。1.1.2 程序框图与算法 的基本逻辑结构 第一课时问题提出1.算法的含义是什么? 在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法. 2.算法是由一系列明确和有限的计算步骤组成的,我们可以用自然语言表述一个算法,但往往过程复杂,缺乏简洁性,因此,我们有必要探究使算法表达得更加直观、准确的方法,这个想法可以通过程序框图来实现.程序框图与顺序结构知识探究(一):算法的程序框图思考1:“判断整数n(n>2)是否为质数”的算法步骤如何?第一步,给定一个大于2的整数n; 第二步,令i=2; 第三步,用i除n,得到余数r; 第四步,判断“r=0”是否成立.若是,则n 不是质数,结束算法;否则,将i 的值增加1,仍用i表示; 第五步,判断“i>(n-1)”是否成立,若是, 则n是质数,结束算法;否则,返回 第三步. 思考2:我们将上述算法用下面的图形表示:上述表示算法的图形称为算法的程序框图又称流程图,其中的多边形叫做程序框,带方向箭头的线叫做流程线,你能指出程序框图的含义吗? 用程序框、流程线及文字说明来表示算法的图形. 思考3:在上述程序框图中,有4种程序框,2种流程线,它们分别有何特定的名称和功能? 终端框 (起止框) 输入、输出框 处理框 (执行框) 判断框 流程线 表示一个算法的起始和结束 表示一个算法输入和输出的信息 赋值、计算 判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N” 连接程序框,表示算法步骤的执行顺序 思考4:在逻辑结构上,“判断整数n(n>2)是否为质数”的程序框图由几部分组成?知识探究(二):算法的顺序结构思考1:任何一个算法各步骤之间都有明确的顺序性,在算法的程序框图中,由若干个依次执行的步骤组成的逻辑结构,称为顺序结构,用程序框图可以表示为:思考2:若一个三角形的三条边长分别为a,b,c,令 ,则三角形的面积
.你能利用这个公式设计一个计算三角形面积的算法步骤吗?第一步,输入三角形三条边的边长 a,b,c. 第二步,计算 . 第三步,计算 .第四步,输出S. 思考3:上述算法的程序框图如何表示? 例1 一个笼子里装有鸡和兔共m只,且鸡和兔共n只脚,设计一个计算鸡和兔各有多少只的算法,并画出程序框图表示.理论迁移算法分析: 第一步,输入m,n.第二步,计算鸡的只数 .第三步,计算兔的只数y=m-x.第四步,输出x,y.程序框图: 例2 已知下图是“求一个正奇数的平方加5的值”的程序框图,若输出的数是30,求输入的数n的值.顺序结构的程序框图的基本特征:小结作业(2)各程序框从上到下用流程线依次连接.(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框.(3)处理框按计算机执行顺序沿流程线依次排列.作业:课件22张PPT。1.1.2 程序框图与算法 的基本逻辑结构 第二课时问题提出 1.用程序框、流程线及文字说明来表示算法的图形称为程序框图,它使算法步骤显得直观、清晰、简明.其中程序框有哪几种基本图形?它们表示的功能分别如何? 终端框 (起止框) 输入、输出框 处理框 (执行框) 判断框 流程线 2.顺序结构是任何一个算法都离不开的基本逻辑结构,在一些算法中,有些步骤只有在一定条件下才会被执行,有些步骤在一定条件下会被重复执行,这需要我们对算法的逻辑结构作进一步探究.条件结构与循环结构知识探究(一):算法的条件结构思考1:在某些问题的算法中,有些步骤只有在一定条件下才会被执行,算法的流程因条件是否成立而变化.在算法的程序框图中,由若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为条件结构,用程序框图可以表示为下面两种形式:你如何理解这两种程序框图的共性和个性? 思考2:判断“以任意给定的3个正实数为三条边边长的三角形是否存在”的算法步骤如何设计?第二步,判断a+b>c,b+c>a,c+a>b是否同时成立.若是,则存在这样的三角形;否则,不存在这样的三角形.第一步,输入三个正实数a,b,c.思考3:你能画出这个算法的程序框图吗? 知识探究(二):算法的循环结构思考1:在算法的程序框图中,由按照一定的条件反复执行的某些步骤组成的逻辑结构,称为循环结构,反复执行的步骤称为循环体,那么循环结构中一定包含条件结构吗? 思考2:某些循环结构用程序框图可以表示为: 这种循环结构称为直到型循环结构,你能指出直到型循环结构的特征吗? 在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环. (反复执行循环体,直到条件满足)思考3:还有一些循环结构用程序框图可以表示为:这种循环结构称为当型循环结构,你能指出当型循环结构的特征吗?在每次执行循环体前,对条件进行判断,当条件满足,就执行循环体,否则终止循环. (当条件满足时反复执行循环体)思考4:计算1+2+3+…+100的值可按如下过程进行:第1步,0+1=1.
第2步,1+2=3.
第3步,3+3=6.
第4步,6+4=10.
……
第100步,4950+100=5050. 我们用一个累加变量S表示每一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为S=S+i,其中S的初始值为0,i依次取1,2,…,100,通过重复操作,上述问题的算法如何设计? 第四步,判断i>100是否成立.若是,则输出S,结束算法;否则,返回第二步.第一步,令i=1,S=0.第二步,计算S+i,仍用S表示.第三步,计算i+1,仍用i表示.思考5:用直到型循环结构,上述算法的程序框图如何表示?思考6:用当型循环结构,上述算法的程序框图如何表示? 例1 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示. 理论迁移算法分析:第一步,输入三个系数a,b,c.第二步,计算△=b2-4ac.第三步,判断△≥0是否成立.若是,则计 算 ;否则,输出“方程没有 实数根”,结束算法.第四步,判断△=0是否成立.若是,则输出 x1=x2=p,否则,计算x1=p+q,x2=p-q, 并输出x1,x2. 程序框图: 例2 某工厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%.设计一个程序框图,输出预计年生产总值超过300万元的最早年份.第三步,判断所得的结果是否大于300. 若是,则输出该年的年份; 否则,返回第二步.第一步, 输入2005年的年生产总值.第二步,计算下一年的年生产总值.算法分析:(3)控制条件:当“a>300”时终止循环.(1)循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则t=0.05a,a=a+t,n=n+1.(2)初始值:n=2005,a=200.循环结构:程序框图:(3)条件结构和循环结构的程序框图各有两种形式,相互对立统一.条件结构和循环结构的基本特征:小结作业(1)程序框图中必须有两个起止框,穿插输入、输出框和处理框,一定有判断框.(2)循环结构中包含条件结构,条件结构中不含循环结构.作业:
P20习题1.1A组:2,3.课件21张PPT。1.1.2 程序框图与算法 的基本逻辑结构 第三课时问题提出 1.算法的基本逻辑结构有哪几种?用程序框图分别如何表示? 顺序结构条件结构循环结构 2.在学习上,我们要求对实际问题能用自然语言设计一个算法,再根据算法的逻辑结构画出程序框图,同时,还要能够正确阅读、理解程序框图所描述的算法的含义,这需要我们对程序框图的画法有进一步的理解和认识.程序框图的画法知识探究(一):多重条件结构的程序框图思考1:解关于x的方程ax+b=0的算法步骤如何设计?第三步,判断b是否为0.若是,则输出“方程的解为任意实数”;否则,输出“方程无实数解”.第一步,输入实数a,b.第二步,判断a是否为0.若是,执行第三步;否则,计算 ,并输出x,结束算法.思考2:该算法的程序框图如何表示? 思考3:你能画出求分段函数的值的程序框图吗?思考3:你能画出求分段函数
的值的程序框图吗?思考1:用“二分法”求方程 的近似解的算法如何设计? 知识探究(二):混合逻辑结构的程序框图第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. 第三步,取区间中点 . 第四步,若f(a)·f(m)<0,则含零点的区间为[a,m];否则,含零点的区间为[m,b].将新得到的含零点的区间仍记为[a,b]. 第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步. 思考2:该算法中哪几个步骤可以用顺序结构来表示?这个顺序结构的程序框图如何?思考3:该算法中第四步是什么逻辑结构?这个步骤用程序框图如何表示?思考4:该算法中哪几个步骤构成循环结构?这个循环结构用程序框图如何表示?思考5:根据上述分析,你能画出表示整个算法的程序框图吗?知识探究(三):程序框图的阅读与理解思考1:怎样理解该程序框图中包含的逻辑结构?思考2:该程序框图中的循环结构属于那种类型? 思考3:该程序框图反映的实际问题是什么?求12-22+32-42+…+992-1002的值. 理论迁移 例 画出求三个不同实数中的最大值的程序框图. 小结作业设计一个算法的程序框图的基本思路:第二步,确定每个算法步骤所包含的逻 辑结构,并用相应的程序框图表示.第一步,用自然语言表述算法步骤.第三步,将所有步骤的程序框图用流程 线连接起来,并加上两个终端框.作业:
P19练习(只要求画出算法的 程序框图).
P20习题1.1B组:2.课件71张PPT。 1.2.1基本算法语句
——输入语句、输出语句和赋值语句【探究新知】
我们知道,顺序结构是任何一个算法都离不开的基本结构。 输入、输出语句和赋值语句基本上对应于算法中的顺序结构. 计算机从上而下按照语句排列的顺序执行这些语句. 输入语句和输出语句分别用来实现算法的输入信息,输出结果的功能.(如右图)1.2.1输入语句、输出语句
和赋值语句这就是这一节所要研究的主要内容——基本算法
语句。今天,我们先一起来学习输入、输出语句
和赋值语句。 程序设计语言有很多种。如BASIC,Foxbase,
C语言,C++,J++,VB等。为了实现算法中的
三种基本的逻辑结构:顺序结构、条件结构和循
环结构,各种程序设计语言中都包含下列基本的
算法语句:输入语句 输出语句 赋值语句 条件 语句 循环 语句 输入语句和输出语句分别用来实现算法的输入信息,输出结果的功能。 例1 用描点法作函数y=x3+3x2-24x+30的图象
时,需要求出自变量和函数的一组对应值.编写程序,
分别计算当x=-5,-4,-3,-2,-1,0,1,
2,3,4,5时的函数值. INPUT “x=”;x
y=x^3+3*x^2-24*x+30
PRINT x
PRINT y
END程序: -----------------输入语句 ---------赋值语句-------------------------输出语句-------------------------输出语句-------------------------表示结束一.输入语句 INPUT “提示内容”;变量输入语句的一般格式 说明:
(1)输入语句的作用是实现算法的输入信息功能;
(2)“提示内容”提示用户输入什么样的信息,
变量是指程序在运行时其值是可以变化的量;
(3)输入语句要求输入的值只能是具体的常数,
不能是函数、变量或表达式;
(4)提示内容与变量之间用分号“;”隔开,
(5)“提示内容”和它后面的 “;”可以省略;
如INPUT “x=”;x 或INPUT x
例如,输入一个学生数学,语文,英语三门课的成绩,
可以写成:INPUT “数学,语文,英语”;a,b,c注意:
INPUT语句还可以给多个变量赋值,变量与变量之间用逗号“,”隔开.其格式为:INPUT “提示内容1,提示内容2,…”;变量1,变量2,…练一练:1、给定一个任意正整数n。
2、给定三角形的三条边长1INPUT “n=”; n 2INPUT a, b, c 二.输出语句 PRINT “提示内容”;表达式①输出常量,变量的值和字符串等系统信息。
②输出数值计算的结果。(1)输出语句的用途: 输出语句的一般格式(3)同输入语句一样,表达式前也可以有“提示内容”.〖思考〗:在课本P7页图1.1-2程序框图中的输出框的内容怎样用输出语句来表达? 参考答案:
输出框:PRINT “n是质数.”
PRINT “n不是质数.”PRINT “S=”; S 【例题解析】
〖例2〗:编写程序,计算一个学生数学、语文、
英语三门课的平均成绩。分析:先写出算法,画出程序框图,再进行编程。结束程序框图程序:INPUT “Maths= ”;a
INPUT “Chinese= ”;b
INPUT “English= ”;c
PRINT “The average= ”;(a+b+c)/3
ENDy=(a+b+c)/3输出y结束开始例2、编写程序,计算一个学生数学、语文、英语三门课的平均成绩。INPUT “a,b,c”;a,b,c
y=(a+b+c)/3
PRINT “y=”;y
END输入a、b、cINPUT “a,b,c”;a,b,c
PRINT “y=”;(a+b+c)/3
END程序2程序3三.赋值语句(1)赋值语句的一般格式:变量=表达式(2)作用:先计算出赋值号右边表达式的值,然后把这个值赋给左边的变量,使该变量的值等于表达式的值。
(3)赋值语句左边只能是变量名字而不是表达式,如:2=x是错误的;右边表达式可以是一个数据、常量或算式;不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)
(4)一个语句只能给一个变量赋值。
(5)对于一个变量可以多次赋值,但变量的取值总是最近被赋值的。练习:练习:读下列两个程序,回答问题.①X=3
y=4
x=y
PRINT x, y
END上述程序最后输出的x ,y 分别是为:② X=3
y=4
y=x
PRINT x, y
END4,43,3返回三、课后练习1:p.24练习第一题程序程序:
INPUT “F= ”;F
C=(F-32)*5/9
PRINT “C= ”;C
ENDBASIC语言中的常用运算符号〖例3〗:给一个变量重复赋值。程序:A=10
A=A+15
PRINT A
ENDA的输出值是多少? 分析:此程序给变量A赋了两次值.A的初值为10,第二次赋值后,初值被“覆盖”,A的值变为25,因此输出值是25.[变式引申]:在此程序的基础上,设计一个程序,
要求最后A的输出值是30.A=10
A=A+15
PRINT A
A=A+5
PRINT A
END程序:〖例3〗:给一个变量重复赋值。程序:A=10
A=A+15
PRINT A
END对于一个变量可以多次赋值,
但变量的取值总是最近被赋值的。〖例4〗交换两个变量A和B的值,并输出交换前后
的值。分析:引入一个中间变量X,将A的值赋予X,又将B
的值赋予A,再将X的值赋予B,从而达到交换A,
B的值.(比如交换装满水的两个水桶里的水需要
再找一个空桶)INPUT A
INPUT B
PRINT A,B
X=A
A=B
B=X
PRINT A,B
END程序:不能!!!!!!1:下列给出的输入,输出语句正确的是( )①输入语句INPUT a;b;c
②输入语句INPUT x=3
③输出语句PRINT A=4
④输出语句PRINT 20,3*22:当x的值为5时, “PRINT “x=”;x”在屏幕上输出的结果是( )
A: 5=5 B: 5 C: 5=x D: x=5练习1INPUT “A,B=”;A,B
B=A+B
A=B-A
B=B-A
PRINT “A,B=”;A,B
END
(运行时从键盘输入3,7)(1)(2)A=-1000
A=A+100
PRINT“A=”;A
END 将一个变量的值赋给另一个变量,前一个变量的值保持不变;可先后给一个变量赋多个不同的值,但变量的取值总是最近被赋予的值 。A=-900A,B =7 3练习2.分析下列程序,考虑输出的结果是什么?(3)a=1
b=a+3
b=b+1
PRINT “b=”;b
运算结果是 ( b=5 ) (4)a=2
b=3
c=4
b=c+2
c=b+4
d=(a+b+c)/3
PRINT “d=”;d
运算结果是( )d=6a=2
b=3
c=a+b
b=a+c-b
PRINT “a=,b=,c=”;a,b,c
END
运算结果是 ( )(5)(6)x=1
x=x*2
x=x*3
x=x*4
PRINT x*5
END
运算结果是 ( )a=2,b=4,c=560三、课后练习2:p.24练习第二题程序程序:
INPUT “a=,b= ”;a,b
sum=a+b
diff=a-b
mul=a*b
div=a/b
PRINT sum,diff,mul,div
END三、课后练习3:p.24练习第三题程序程序:
INPUT “a= ”;a
INPUT “b= ”;b
INPUT “c= ”;c
p=(a+b+c)/2
s=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “s= ”;s
END三、课后练习4:p.24练习第四题程序程序:
INPUT “a,b,c= ” ;a,b,c
x=10.4*a
y=15.6*b
z=25.2*c
sum=x+y+z
PRINT “sum= ”;sum
END〖练习1〗:编写一个程序,要求输入一个圆的半径,
便能输出该圆的周长和面积.( π取3.14)分析:设圆的半径为R,则圆的周长C=2πR,面积S=πR2,可以利用顺序结构中的INPUT语句,PRINT语句和赋值语句设计程序。INPUT “R=”;R
C=2*3.14*R
S=3.14*R^2
PRINT “C=”;C
PRINT “S=”; S
END读下列两个程序语句回答问题.(1)上述两个程序有何区别.
(2) 写出两个程序的运行结果;(a)INPUT X
INPUT Y
X=2009
Y=2008
X=Y
PRINT X , Y
END(b)INPUT X
INPUT Y
X=2009
Y=2008
Y=X
PRINT X , Y
END
能力提升(a) 2008 2008(b) 2009 2009归纳总结巩固提高 水果店的老板忙极了,小新设计了一个程序帮助老板算账.已知水晶梨2.4元/千克,葡萄8.6元/千克,哈密瓜4.2元/千克,某顾客分别买这三种水果a,b,c 千克.请你将程序补充完整。
INPUT
A=2.4*a
B=8.6*b
C=4.2*c
S=
PRINT
ENDa, b, cA+B+CS〖练习2〗P20页T1.〖练习3〗P16页T2.
注:BASIC语言中的标准函数SQR(x),表示数x的算术平方根,ABS(x)表示x的绝对值等.〖练习4〗P16页T3.ABS(x)=|x|.INPUT “a,b,c=”;a ,b,c
X=10.4*a
Y=15.6*b
Z=25.2*c
sum=X+Y+Z
PRINT “sum=”;sum
END程序:〖作业1〗P16页T4.INPUT “a,b,h=”;a ,b,h
p=a+b
s=p*h/2
PRINT “s=”;s
END程序:〖作业2〗P25页A组T2. 【课堂小结】
(1)本节课介绍了输入语句、输出语句和赋值语句的结构特点及联系.
(2)掌握并应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题,特别是掌握赋值语句中“=”的作用及应用.
(3)编程一般的步骤:先写出算法,再进行编程.我们要养成良好的习惯,也有助于数学逻辑思维的形成。 比较下列各组语句的区别,再判断它们是否正确.
(1)① 输入语句 INPUT “a=” ;a
② 输入语句 INPUT “a=” ,a √╳(2)① 输入语句 INPUT “a,b,c=”;a,b;c
② 输入语句 INPUT a,b, c√“提示内容”与
变量之间用分
号隔开.“提示内容”与后面的“;”可省略.变量与变量之间用逗号隔开出PRINT出出出PRINTPRINTPRINT观 察╳ 比较下列各组语句的区别,再判断它们是否正确.
(3)① 输出语句PRINT “S=”;7
② 输出语句PRINT S=7√╳√╳赋值号左边是变量,只能给一个变量赋值.╳输入、输出语句中不能用赋值号.观 察(4)① 赋值语句 r=9
② 赋值语句 9=r
③ 赋值语句 R=r=9作业: 1.2.2基本算法语句
——条件语句 算法中的条件结构是由条件语句来表达的,条件语句是处理条件分支逻辑结构的算法语句 .条件语句的一般格式 只含一个“分支”的条件结构写成条件语句为当计算机执行这种形式的条件语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句体,否则执行END IF之后的语句. 含两个“分支”的条件结构写成条件语句为 当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN后的语句体1,否则执行ELSE后的语句体2. 条件语句的作用
在程序执行过程中,根据判断是否满足约定的条件而决定是否需要转换到何处去。需要计算机按条件进行分析、比较、判断,并按判断后的不同情况进行不同的处理。【例题解析】〖例1〗:编写程序,输入一元二次方程ax2+bx+c=0的系数,输出它的实数根。算法分析: 一元二次方程的根有三种不同情况:设判别式△=b2-4ac (1)当△>0时,一元二次方程有两个不等的实数根.(2)当△=0时,一元二次方程有两个相等的实数根.(3)当△<0时,一元二次方程没有实数根.是【程序框图】开始输入a,b,c△=b2-4ac△≥0?原方程无实根22结束否11△=0?输出p是否x1=p+qx2=p-q输出x1,x2【程序】INPUT “ a,b,c =”;a,b,c
d=b*b-4*a*c
IF d>=0 THEN
p=-b/(2*a)
q=SQR(d)/(2*a)
IF d=0 THEN
PRINT “One real root:”;p
ELSE
x1=p+q
x2=p-q
PRINT “Two real roots:“;x1,x2
END IF
ELSE
PRINT “No real root!”
END IF
END〖例2〗:编写程序,使得任意输入的3个整数按从大到小的顺序输出。 算法分析:用a,b,c表示输入的3个整数;为了节约变量,把它们重新排列后,仍用a,b,c表示,并使a≥b≥c.具体操作步骤如下。
第一步:输入3个整数a,b,c.
第二步:将a与b比较,并把小者赋给b,大者赋给a.
第三步:将a与c比较. 并把小者赋给c,大者赋给a,此时a已是三者中最大的。
第四步:将b与c比较,并把小者赋给c,大者赋给b,此时a,b,c已按从大到小的顺序排列好。
第五步:按顺序输出a,b,c.c=bb=tb=tc=ta=c【程序框图】开始输入a,b,cb>a?是t=aa=b否c>a?是t=a否c>b?t=c是否输出a,b,c交换a,b的值【程序】INPUT “a,b,c =”;a,b,c
IF b>a THEN
t=a
a=b
b=t
END IF
IF c>a THEN
t=a
a=c
c=t
END IF
IF c>b THEN
t=b
b=c
c=t
END IF
PRINT a,b,c
END 【课堂小结】
本节课主要学习了条件语句的结构、特点、作用以及用法,并懂得利用它解决一些简单问题。条件语句使程序执行产生的分支,根据不同的条件执行不同的路线,使复杂问题简单化。
条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套。
【课堂练习】1.课本P29页T2.读程序,说明程序的运行过程.INPUT “x=:”;x
IF 9 a=x10
b=x MOD 10
x=10*b+a
PRINT x
END IF
END[问题]如输入的数x=86,则输出的结果是什么?68 此程序用于交换一个两位数的个位和十位数字.2.课本P29页T1.INPUT “a,b,c=”; a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
PRINT “Yes.”
ELSE
PRINT “No.”
END IF
END参考答案:3.课本P29页T3.编写求一个数是偶数还是奇数的程序,从键盘输入一个整数,输出该数的奇偶性.INPUT “a=”; a
IF a MOD 2 =0 THEN
PRINT “Even.”
ELSE
PRINT “Odd.”
END IF
END参考答案:4.课本P29页T1.闰年指年份能被4整除但不能被100整除,或者能被400整除的年份.编写一个程序,判断输入的年份是否为闰年.INPUT “Please input a year:”;y
b=y MOD 4
c=y MOD 100
d=y MOD 400
IF b=0 AND c< >0 THEN
PRINT “Leap year.”
ELSE
IF d=0 THEN
PRINT “Leap year.”
ELSE
PRINT “Not leap year.”
END IF
END IF
END参考答案:表示c≠0 地球绕太阳公转,每年并不是365天,而是多出来5个多个小时,这样的话,每四年就会多将近1天,所以就放在2月的第29天了,闰年由此诞生。由于不是准确地多出来24小时,所以基本上每经过24个闰年就不会多出1天了,但还是会多出几分钟的,如果从公元元年开始计的话正好也就是逢100的年份大多数时候不是不闰年,这样把多出的那几分钟再攒着,经过400年后,就会有一个逢100的年份是闰年,比如公元1600年是闰年,1700、1800、1900年都不是,2000年才是闰年,下一次是2400年 5.编写一个程序,输入两个整数a,b,判断a是否能被b整除.INPUT “a,b=”; a,b
IF a MOD b =0 THEN
PRINT “b divides a.”
ELSE
PRINT “b does not divide a.”
END IF
END参考答案:6.(P25页B组T2)INPUT “x=”;x
IF x<1 THEN
y=x
ELSE
IF x>=1 AND x<10 THEN
y=2*x-1
ELSE
y=3*x-11
END IF
END IF
PRINT“y=”;y
END参考答案: 1.2.3基本算法语句
——循环语句算法中的循环结构是由循环语句来实现的 .循环结构有两种-----当型与直到型.当型循环结构(当条件满足时反复执行循环体)直到型循环结构(反复执行循环体直到条件满足) 对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。 (1)WHILE语句的一般格式是 WHILE 条件
循环体
WEND 当计算机遇到WHILE语句时,
先判断条件的真假,如果条件
符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止.这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句. WHILE——当……时候WEND—— 朝……方向行走(2)UNTIL语句的一般格式是:
DO
循环体
LOOP UNTIL 条件DO——做什么LOOP UNTIL——绕环回线走,直到达到某种
条件为止思考:参照其直到型循环结构对应的程序框图,说说
计算机是按怎样的顺序执行UNTIL语句的? 提问:通过对照,大家觉得WHILE型语句与UNTIL型
语句之间有什么区别呢? 区别:在WHILE语句中,是当条件满足时执行循环
体,而在UNTIL语句中,是当条件不满足时执行循环
体。例1.编写程序,
计算自然数1+2+3+…+99+100的和. 分析:这是一个累加问题.我们可以用WHILE型语句,也可以用UNTIL型语句。i=1
S=0WHLIE i<=100S=S+ii=i+1WENDPRINT SENDi=1
S=0DOS=S+i
i=i+1LOOP UNTILi>100PRINT SEND变式训练(1):
编写程序求:n!=1×2×3×4×5×……×n的值.如何修改?WHILE语句i=1
S=0WHLIE i<=100S=S+ii=i+1WENDPRINT SENDINPUT “n=”;nS=1S=S*ii≤n?S=1nS=S*i变式训练(2):
编写程序求:1×3×5×7×……×101的值.如何修改?UNITL语句i=1
S=0DOS=S+ii=i+1LOOP UNTIL i>100PRINT SENDS=1101S=S*ii=i+2直到型S=1S=S*i i=i+2i>101?例2:根据P7页图1.1-2,将程序框图转化为程序语句. 分析:仔细观察,该程序框图中既有条件结构,又有循环结构。INPUT “n=”;n
i=2
DO
r=n MOD i
i=i+1
LOOP UNTIL i>=n OR r=0
IF r=0 THEN
PRINT “n is not a prime number.”
ELSE
PRINT “n is a prime number.”
END IF
END程序程序框图程序a=1b=2e=0.005DOm=(a+b)/2f=m^2-2g=a^2-2IF g*f>0 THENa=mELSEb=mEND IFLOOP UNTIL ABS(a-b)和初值a,ba=m否b=m|a-b|<ε或f(m)=0?输出m结束返回P33页B组题1程序框图程序INPUT a1,b1,c1,a2,b2,c2IF a1<>0 THENu=-a2/a1b=b2+b1*uc=c2+c1*uy=c/bx=(c2-b2*y)/a2ELSEy=c1/b1x=(c2-b2*y)/a2END IFPRINT x,yEND 继续开始程序框图输入a1,b1,c1,a2,b2,c2a1≠0?是u=-a2/a1b=b2+b1uc=c2+c1uy=c/bx=(c2-b2y)/a2否y=c1/b1返回课件19张PPT。辗转相除法与更相减损术算 法 案 例第一课时1. 回顾算法的三种表示方法:(1)、自然语言(2)、程序框图(3)、程序语言(三种逻辑结构)(五种基本语句)复习引入2. 思考: 小学学过的求两个数的最大公约数的方法? 先用两个公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.例:求下面两个正整数的最大公约数:(1)求25和35的最大公约数
(2)求49和63的最大公约数所以,25和35的最大公约数为5所以,49和63的最大公约数为7思考:除了用这种方法外还有没有其它方法?例:如何算出8251和6105的最大公约数?新课讲解:一、辗转相除法(欧几里得算法)1、定义:
所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数。若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时较小的数就是原来两个数的最大公约数。 2、步骤(以求8251和6105的最大公约数的过程为例)
第一步 用两数中较大的数除以较小的数,求得商和余数8251=6105×1+2146结论: 8251和6105的公约数就是6105和2146的公约数,求8251和6105的最大公约数,只要求出6105和2146的公约数就可以了。第二步 对6105和2146重复第一步的做法6105=2146×2+1813同理6105和2146的最大公约数也是2146和1813的最大公约数。 为什么呢?思考:从上述的过程你体会到了什么?完整的过程8251=6105×1+2146 6105=2146×2+1813 2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0例: 用辗转相除法求225和135的最大公约数225=135×1+90135=90×1+4590=45×2显然37是148和37的最大公约数,也就是8251和6105的最大公约数 显然45是90和45的最大公约数,也就是225和135的最大公约数 思考1:从上面的两个例子中可以看出计算的规律是什么? S1:用大数除以小数S2:除数变成被除数,余数变成除数S3:重复S1,直到余数为0 辗转相除法是一个反复执行直到余数等于0才停止的步骤,这实际上是一个循环结构。m = n × q + r用程序框图表示出右边的过程r=m MOD nm = nn = rr=0?是否思考2:辗转相除法中的关键步骤是哪种逻辑结构? (1)、算法步骤:第一步:输入两个正整数m,n(m>n).
第二步:计算m除以n所得的余数r.
第三步:m=n,n=r.
第四步:若r=0,则m,n的最大公约数等于m;
否则转到第二步.
第五步:输出最大公约数m.思考:你能把辗转相除法编成一个计算机程序吗?(2)、程序框图:(3)、程序:INPUT “m,n=“;m,n
DO
r=m MOD n
m=n
n=r
LOOP UNTIL r=0
PRINT m
END二、更相减损术 可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之。第一步:任意给定两个正整数;判断他们是否都是偶数。若是,则用2约简;若不是则执行第二步。第二步:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数。继续这个操作,直到所得的减数和差相等为止,则这个等数就是所求的最大公约数。(1)、《九章算术》中的更相减损术:1、背景介绍:(2)、现代数学中的更相减损术:2、定义: 所谓更相减损术,就是对于给定的两个数,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,再用较大的数减去较小的数,反复执行此步骤直到差数和较小的数相等,此时相等的两数便为原来两个数的最大公约数。例: 用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减 98-63=3563-35=2835-28=728-7=21
21-7=21
14-7=7所以,98和63的最大公约数等于7 3、方法:1、用更相减损术求两个正数84与72的最大公约数. 练习:思路分析:先约简,再求21与18的最大公约数,然后乘以两次约简的质因数4。2、求324、243、135这三个数的最大公约数。思路分析:求三个数的最大公约数可以先求出两个数的最大公约数,第三个数与前两个数的最大公约数的最大公约数即为所求。(1)、算法步骤第一步:输入两个正整数a,b(a>b);
第二步:若a不等于b ,则执行第三步;否则转到第五步;
第三步:把a-b的差赋予r;
第四步:如果b>r, 那么把b赋给a,把r赋给b;否则把r赋给a,执行第二步;
第五步:输出最大公约数b.思考:你能根据更相减损术设计程序,
求两个正整数的最大公约数吗?(2)、程序框图(3)、程序INPUT “a,b=“;a,b
WHILE a<>b
r=a-b
IF b>r THEN
a=b
b=r
ELSE
a=r
END IF
WEND
PRINT b
END比较辗转相除法与更相减损术的区别
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。小结课件13张PPT。算 法 案 例----秦九韶算法 在数学的发展史上,从公元前2、3世纪公元14世纪,中国的数学虽有过高潮,也有过低落,但一直走在世界的前列,是世界数学的中心。中国古代数学对世界数学发展有着不可磨灭的贡献。秦九韶算法就是中国古代数学的一枝奇葩。
今天这节课我们领略秦九韶算法的魅力。(1)设计求多项式当x=5时的值的算法,并写出程序。
(2)有没有更高效的算法?能否探求更好的算法,来解决任意多项式的求解问题?T引导学生把多项式变形为:
思考:从内到外,如果把每一个括号都看成一个常数,那么变形后的式子中有哪些“一次式”?x的系数依次是什么?(3)若将x的值代入变形后的式子中,那么求值的计算过程是怎样的? 将变形前x的系数乘以x的值,加上变形前的第2个系数,得到一个新的系数;将此系数继续乘以x的值,再加上变形前的第3个系数,又得到一个新的系数;继续对新系数做上面的变换,直到与变形前的最后一个系数相加,得到一个新的系数为止。这个系数即为所求多项式的值。这种算法即是“秦九韶算法” (4)用秦九韶算法求多项式的值,与多项式组成有直接关系吗?用秦九韶算法计算上述多项式的值,需要多少次乘法运算和多少次加法运算? 《数书九章》——秦九韶算法对该多项式按下面的方式进行改写:思考:当知道了x的值后该如何求多项式的值?这是怎样的一种改写方式?最后的结果是什么?要求多项式的值,应该先算最内层的一次多项式的值,即然后,由内到外逐层计算一次多项式的值,即最后的一项是什么?这种将求一个n次多项式f(x)的值转化成求n个一次多项式的值的方法,称为秦九韶算法。思考:在求多项式的值上,这是怎样的一个转化? 通过一次式的反复计算,逐步得出高次多项式的值,对于一个n次多项式,只需做n次乘法和n次加法即可。秦九韶算法的特点:算法步骤:第一步:输入多项式次数n、最高次项的系数an和x的值.第二步:将v的值初始化为an,将i的值初始化为1.第三步:输入i次项的系数an-i.第四步:v=vx+an-i,i=i+1.第五步:判断i是否小于或等于n,若是,则返回第三步;否则,输出多项式的值v。程序框图:这是一个在秦九韶算法中反复执行的步骤,因此可用循环结构来实现。输入an-i(3)程序:INPUT “n=”;n
INPUT “an=“;a
INPUT “x=“;x
v=a
i=n-1
WHILE i>=0
PRINT “i=“;i
INPUT “ai=“;a
v=v*x+a
i=i-1
WEND
PRINT v
END小结:
(1)算法具有通用的特点,可以解决一类问题;
(2)解决同一类问题,可以有不同的算法,
但计算的效率是不同的,应选择高效的算法
(3)算法的种类虽多,但三种逻辑结构可以有效
的表达各种算法等。
课件27张PPT。进位制算法案例(第三课时)复习引入:1、秦九韶算法的方法和步骤?
2、举例说明日常生活中的进位制。一、进位制1、什么是进位制?进位制是人们为了计数和运算方便而约定的记数系统。进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。新课讲解: 比如: 满二进一,就是二进制;
满十进一,就是十进制;
满十二进一,就是十二进制;
满六十进一,就是六十进制“满几进一”就是几进制,几进制的基数就是几.基数:2、最常见的进位制是什么?除此之外还有哪些常见的进位制?请举例说明.最常见的进位制应该是我们数学中的十进制,比如一般的数值计算,但是并不是生活中的每一种数字都是十进制的.
古人有半斤八两之说,就是十六进制与十进制的转换.
比如时间和角度的单位用六十进位制, 计算“一打”数值时是12进制的。
电子计算机用的是二进制 。 式中1处在百位,第一个3所在十位,第二个3所在个位,5和9分别处在十分位和百分位。十进制数是逢十进一的。 我们最常用最熟悉的就是十进制数,它的数值部分是十个不同的数字符号0,1,2,3,4,5,6,7,8,9来表示的。十进制:例如133.59,它可用一个多项式来表示:133.59=1*102+3*101+3*100 +5*10-1+9*10-2 实际上,十进制数只是计数法中的一种,但它不是唯一
记数法。除了十进制数,生产生活中还会遇到非十进制的
记数制。如时间:60秒为1分,60分为1小时,它是六十进
制的。两根筷子一双,两只手套为一副,它们是二进制的。其它进制: 二进制、七进制、八进制、十二进制、
六十进制……二进制只有0和1两个数字,七进制用0~6七个数字十六进制有0~9十个数字及ABCDEF六个字母. 为了区分不同的进位制,常在数的右下角标明基数,十进制一般不标注基数.例如十进制的133.59,写成133.59(10)七进制的13,写成13(7);二进制的10,写成10(2) A3、十进制的构成十进制由两个部分构成例如:3721其它进位制的数又是如何的呢?(用10个数字来记数,称基数为10)表示有:1个1,2个十, 7个百即7个10的平方,3个千即3个10的立方其它进制数化成十进制数公式二、 二进制二进制是用0、1两个数字来描述的.如11001二进制的表示方法区分的写法:11001(2)或者(11001)2八进制呢?如7342(8)k进制呢?anan-1an-2…a1(k)?三、二进制与十进制的转换1、二进制数转化为十进制数例1:将二进制数110011(2)化成十进制数。解:根据进位制的定义可知所以,110011(2)=51.其它进制数化成十进制数公式2、把其他进位制的数化为十进制数的公式是什么?例2、设计一个算法,将k进制数a(共有n位)转换为十进制数b。(1)算法步骤:第一步,输入a,k和n的值;第二步,将b的值初始化为0,i的值初始化为1;第三步,b=b+ai*ki-1, i=i+1第四步,判断i>n是否成立.若是,则执行第五步,否则,返回第三步;第五步,输出b的值.(2)程序框图:(3)程序:INPUT “a,k,n=”;a,k,n
b=0
i=1
t=a MOD 10
DO
b=b+t*k^(i-1)
a=a10
t=a MOD 10
i=i+1
LOOP UNTIL i>n
PRINT b
END**上面的程序如采用get函数,可简化为:备注:GET函数用于取出a的右数第i位数方法:除2取余法,即用2连续去除89或所得的商,然后取余数。例、 把89化为二进制数解:根据“逢二进一”的原则,有89=2×44+1= 2× (2×22+0)+1= 2×( 2×( 2×11+0)+0)+1= 2× (2× (2× (2× 5+1)+0)+0)+15= 2× 2+1=2×(2×(2×(2×(22+1)+1)+0)+0)+189=1×26+0×25+1×24+1×23+0×22+0×21+1×20所以:89=1011001(2)=2×(2×(2×(23+2+1)+0)+0)+1=2×(2×(24+22+2+0)+0)+1=2×(25+23+22+0+0)+1=26+24+23+0+0+2089=2×44+144= 2×22+022= 2×11+011= 2× 5+1= 2× (2× (2× (2× (2× 2+1)+1)+0)+0)+1所以89=2×(2×(2×(2×(2 × 2 +1)+1)+0)+0)+12、十进制转换为二进制注意:
1.最后一步商为0,
2.将上式各步所得的余数从下到上排列,得到:
89=1011001(2)另解(除2取余法的另一直观写法):522212010余数11224489222201101例1:把89化为五进制数。3、十进制转换为其它进制解:根据除k取余法以5作为除数,相应的除法算式为:所以,89=324(5)例2、设计一个程序,实现“除k取余法”。(1)、 算法步骤:第一步,给定十进制正整数a和转化后的数的基数k;第二步,求出a 除以k 所得的商q ,余数r;第三步,若q 0, 则a=q, 返回第二步;否则,执行第四步;第四步,将依次得到的余数从右到左排列,得到k 进制数。(2)程序框图:(3)程序:INPUT “a,k=”;a,k
b=0
i=0
DO
q=ak
r=a MOD k
b=b+r*10^i
i=i+1
a=q
LOOP UNTIL q=0
PRINT b
END练习:
完成下列进位制之间的转化:
(1)10231(4)= (10);
(2)235(7)= (10);
(3)137(10)= (6);
(4)1231(5)= (7);
(5)213(4)= (3);
(6)1010111(2)= (4)。1.进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为k,即可称k进位制,简称k进制。k进制需要使用k个数字;2.十进制与二进制之间转换的方法;
先把这个k进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果。小结3.十进制数转化为k进制数的方法:(除k取余法)
用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数,就是相应的k进制数。课件23张PPT。第三章 概 率3.1 随机事件的概率3.1.1 随机事件的概率问题提出日常生活中,有些问题是能够准确回答的.
例如,
明天太阳一定从东方升起吗?
明天第一节课一定是七点半上课吗?等
这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.
例如,
你明天什么时间来到学校?
明天中午11:40有多少人在食堂用餐?
你购买的本期福利彩票是否能中奖?等这些问题的结果都具有偶然性和不确定性.2.从辨证的观点看问题,事情发生的偶然性与必然性之间往往存在有某种内在联系.例如,北京地区一年四季的变化有着确定的、必然的规律,但北京地区一年里哪一天最热,哪一天最冷,哪一天降雨量最大,哪一天下第一场雪等,都是不确定的、偶然的.3.数学理论的建立,往往来自于解决实际问题的需要.对于事情发生的必然性与偶然性,及偶然性事情发生的可能性有多大,我们将从数学的角度进行分析与探究.随机事件的概率知识探究(一):必然事件、不可能事件和随机事件 思考1:考察下列事件:
(1)导体通电时发热;
(2)向上抛出的石头会下落;
(3)在标准大气压下水温升高到100°C
会沸腾.
这些事件就其发生与否有什么共同特点? 思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗? 思考3:你能列举一些必然事件的实例吗?思考4:考察下列事件:
(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;
(3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 思考5:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗? 在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件 思考6:你能列举一些不可能事件的实例吗? 思考7:考察下列事件:
(1)某人射击一次命中目标;
(2)马林能夺取北京奥运会男子乒乓球单打冠军;
(3)抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点? 思考8:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗? 在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 思考9:你能列举一些随机事件的实例吗? 思考10:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A在这个条件下是确定事件,在另一条件下是随机事件?你能举例说明吗? 物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映. 知识探究二):事件A发生的频率与概率 思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么? 思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:
在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,结果如下表所示:
在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少? 0.9思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的? 事件A发生的频率较稳定,在某个常数附近摆动. 思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作
P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少? 思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率? 通过大量重复试验得到事件A发生的频率的稳定值,即概率. 思考7:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率 P(A)是否一定相等? 频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.思考8:必然事件、不可能事件发生的概率分别为多少?概率的取值范围是什么? 思考9:概率为1的事件是否一定发生?概率为0的事件是否一定不发生? 思考10:怎样理解“9月10号杭州地区的降水概率为0.6”的含义? 理论迁移 例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)如果a>b,那么a一b>0;
(2)在标准大气压下且温度低于0°C时,冰融化;
(3)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;
(4)某电话机在1分钟内收到2次呼叫;
〈5)手电筒的的电池没电,灯泡发亮;
(6)随机选取一个实数x,得|x|≥0.例2 某射手在同一条件下进行射击,结果如下表所示:
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是多少?0.80.950.880.920.890.910.90小结作业1.概率是频率的稳定值,根据随机事件发生的频率只能得到概率的估计值.2.随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率逐渐稳定在区间[0,1]内的某个常数上(即事件A的概率),这个常数越接近于1,事件A发生的概率就越大,也就是事件A发生的可能性就越大;反之,概率越接近于0,事件A发生的可能性就越小.因此,概率就是用来度量某事件发生的可能性大小的量. 3.任何事件的概率是0~1之间的一个确定的数,小概率(接近0)事件很少发生,大概率(接近1)事件则经常发生,知道随机事件的概率的大小有利于我们作出正确的决策. 课件13张PPT。3.1.2 概率的意义请大家回忆一下随机事件发生的概率的定义?对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记着P(A),称为事件A的概率,简称为A的概率。 那么,这节课我们将通过生活中的一些例子来进一步理解概率的概念。 有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。你认为这种想法正确吗? 这种想法是错误的。因为连续两次抛掷一枚质地均匀的硬币仅仅是做两次重复抛掷硬币的试验,试验的结果仍然是随机的,当然可以两次均出现正面朝上或两次均出现反面朝上。 随机事件在一次试验中发生与否是随机的,但随机中含有规律性。1、概率的正确理解 如果某种彩票的中奖概率为1/1000,那么买1000张这种彩票一定能中奖吗?(假设该彩票有足够多的张数。) 不一定。买1000张彩票相当于做1000次试验,因为每次试验的结果都是随机的,所以做1000次的结果也是随机的。
虽然中奖张数是随机的,但这种随机性中具有规律性。随着试验次数的增加,即随着买的彩票张数的增加,大约有1/1000的彩票中奖。2、游戏的公平性 在各类游戏中,如果每人获胜的概率相等,那么游戏就是公平的。是否公平只要看获胜的概率是否相等。 体育比赛中决定发球权的方法应该保证比赛双方先发球的概率相等,这样才是公平的。 大家有没有注意到在乒乓球、排球等体育比赛中,如何确定由哪一方先发球?你觉得那些方法对比赛双方公平吗? 某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班。有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗? 这种方法不公平。因为从这个表中可以看到有些班级出现的几率比较高。每个班被选中的可能性不一样。3、决策中的概率思想例1 连续掷硬币100次,结果100次全部是正面朝上,出现这样的结果你会怎样想?如果有51次正面朝上,你又会怎样想? 一种是硬币质地均匀,一种是质地不均匀(反面比较重),请大家作出判断,每种结果更可能在哪种情况下得到的?例2 如果一个袋中或者有99个红球,1个白球,或者有99个白球,1个红球,事先不知道到底是哪种情况。一个人从袋中随机摸出1球,结果发现是红球,你认为这个袋中是有99个红球,1个白球,还是99个白球,1个红球呢? 如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法。 如果我们的判断结论能够使得样本出现的可能性最大,那么判断正确的可能性也最大。这种判断问题的方法称为似然法。 极大似然法、似然法是统计中重要的统计思想方法之一。4、天气预报的概率解释 某地气象局预报说,明天本地降水概率为70%。你认为下面两个解释哪一个能代表气象局的观点?
(1)明天本地有70%的区域下雨,30%的区域不下雨;
(2)明天本地下雨的机会是70%。 (1)显然是不正确的,因为70%的概率是说降水的概率,而不是说70%的区域降水。正确的选择是(2)。 降水概率的大小只能说明降水可能性的大小,概率值越大只能表示在一次试验中发生的可能性越大。在一次试验中“降水”这个事件是否发生仍然是随机的。5、试验与发现豌豆杂交试验的子二代结果阅读教材117页 5.试验与发现6、遗传机理中的统计规律第一代第二代概率课件22张PPT。3.1.3 概率的基本性质经调查统计得到,星空乐园的急速飞翔游乐项目处,
排队等候游玩的人数及其概率如下:问题情境求:(1)至多2人排队等候的概率;
(2)至少2人排队等候的概率。 我们知道,一个事件可能包含试验的多个结果。比如在掷骰子这个试验中:“出现的点数小于或等于3”这个事件中包含了哪些结果呢?①“出现的点数为1” ②“出现的点数为2”
③“出现的点数为3”这三个结果这样我们把每一个结果可看作元素,而每一个事件可看作一个集合。
因此。事件之间的关系及运算几乎等价于集合之间的关系与运算。思考:在掷骰子试验中,可以定义许多事件,例如:C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};D1={出现的点数不大于1};D2={出现的点数大于3};D3={出现的点数小于5};E={出现的点数小于7};F={出现的点数大于6};G={出现的点数为偶数};H={出现的点数为奇数};类比集合与集合的关系、运算,你能发现事件之间的关系与运算吗?……(一)、事件的关系与运算对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B).1.包含关系
注:(1)图形表示:(2)不可能事件记作?,任何事件都包含不可能事件。如: C1 ? ?记作:B?A(或A?B) D3={出现的点数小于5};例: C1={出现1点}; 如:D3 ? C1 或 C1 ? D3一般地,若B?A,且A?B ,那么称事件A与事
件B相等。(2)两个相等的事件总是同时发生或同时不发生。B(A)2.相等事件记作:A=B.注:(1)图形表示:例: C1={出现1点};D1={出现的点数不大于1};如: C1=D13.并(和)事件若某事件发生当且仅当事件A或事件B发生,则称此事件为事件A与事件B的并事件(或和事件).记作:A?B(或A+B)AB图形表示:例: C1={出现1点};C5={出现5点};J={出现1点或5点}.如:C1 ? C5=J4.交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件).记作:A?B(或AB)如: C3 ? D3= C4图形表示:例:D2={出现的点数大于3};D3={出现的点数小于5};C4={出现4点};5.互斥事件若A?B为不可能事件( A?B =?)那么称事件A与事件B互斥. (1)事件A与事件B在任何一次试验中不
会同时发生。(2)两事件同时发生的概率为0。图形表示:例: C1={出现1点};C3={出现3点};如:C1 ? C3 = ?注:事件A与事件B互斥时(2)对立事件一定是互斥事件,但互斥 事件不一定是对立事件。6.对立事件若A?B为不可能事件, A?B为必然事件,那么事件A与事件B互为对立事件。注:(1)事件A与事件B在任何一次试验中有且
仅有一个发生。例: G={出现的点数为偶数};H={出现的点数为奇数};如:事件G与事件H互为对立事件探索:一个射手进行一次射击,试判断下列事件
哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环. 事件B:命中环数为10环; 解:A与C互斥(不可能同时发生),B与C互斥,
C与D互斥,C与D是对立事件(至少一个发生) (二)、概率的几个基本性质1.概率P(A)的取值范围(1)0≤P(A)≤1.(2)必然事件的概率是1.(3)不可能事件的概率是0.(4)若A B, 则 p(A) ≤P(B)思考:掷一枚骰子,事件C1={出现1点},事件
C3={出现3点}则事件C1 ? C3 发生的频率
与事件C1和事件C3发生的频率之间有什
么关系?结论:当事件A与事件B互斥时
2.概率的加法公式:如果事件A与事件B互斥,则
P(A ? B)= P(A) + P(B)若事件A,B为对立事件,则
P(B)=1-P(A)3.对立事件的概率公式(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少??例 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是 ,取到方片(事件B)的概率是 。问:解(1)因为C= A∪B,且A与B不会同时发生,所以A与B是互
斥事件。根据概率的加法公式,得:
P(C)=P(A)+P(B)=1/2(2)C与D也是互斥事件,又由于 C∪D为必然事件,所以
C与D互为对立事件,所以
P(D)=1-P(C)=1/2例 某地区的年降水量在下列范围内的概率如下所示:1.求年降水量在[100,200)(㎜)范围内的概率;2.求年降水量在[150,300)(mm)范围内的概率。解:(1)记这个地区的年降水量在[100,150),[150,200),[200,250),[250,300)(mm)范围内分别为事件为A、B、C、D。这4个事件是彼此互斥的。根据互斥事件的概率加法公式,有(1)年降水量在[100,200)(mm)范围内的概率是P(A+B)=P(A)+P(B)=0.12+0.25=0.37(2)年降水量在[150,300)(mm)内的概率是P(B+C+D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.
探究:袋中有12个小球,分别为红球、黑球、
黄球、绿球,从中任取一球,得到红球的概
率为 ,得到黑球或黄球的概率是 ,
得到黄球或绿球的概率也是 ,试求得
到黑球、得到黄球、得到绿球的概率各是多
少? 自我评价1.某射手射击一次射中10环、9环、8环、7环的概率分别是0.24、0.28、0.19、0.16,计算这名射手射击一次
(1)射中10环或9环的概率;
(2)至少射中7环的概率.
(3)射中环数不足8环的概率.2.甲、乙两人下棋,和棋的概率为 ,乙胜的概率为 ,求:(1)甲胜的概率;
(2)甲不输的概率。 本 课 小 结1、事件的关系与运算,区分互斥事件与对立事件
2、概率的基本性质
(1)对于任一事件A,有0≤P(A)≤1
(2)如果事件A与事件B互斥,则P(A ? B)= P(A) + P(B)
(3)若事件A,B为对立事件,则P(B)=1-P(A)课件18张PPT。3.2 古典概型3.2.1 古典概型问题提出1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何? 若事件A发生时事件B一定发生,则 .
若事件A发生时事件B一定发生,反之亦
然,则A=B.若事件A与事件B不同时发
生,则A与B互斥.若事件A与事件B有且
只有一个发生,则A与B相互对立.2.概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则 P(A+B)=P(A)+P(B). 若事件A与事件B相互对立,则 P(A)+P(B)=1. 3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.古典概型思考1:抛掷两枚质地均匀的硬币,有哪几种可能结果?连续抛掷三枚质地均匀的硬币,有哪几种可能结果? (正,正),(正,反), (反,正),(反,反);(正,正,正),(正,正,反),(正,反,正),(反,正,正),
(正,反,反),(反,正,反),(反,反,正),(反,反,反).知识探究(一):基本事件 思考2:上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.在一次试验中,任何两个基本事件是什么关系? 互斥关系 思考3:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成? 思考4:综上分析,基本事件有哪两个特征? (1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.思考5:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.知识探究(二):古典概型 思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗? 思考2:抛掷一枚质地不均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考3:从所有整数中任取一个数的试验中,其基本事件有多少个? 无数个思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型. 在射击练习中,“射击一次命中的环数”是古典概型吗?为什么? 不是,因为命中的环数的可能性不相等. 思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数; P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数. 思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?P(A)=事件A所包含的基本事件的个数÷基本事件的总数. 思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率 P(A)等于什么?特别地,当A=U,A=Ф时,P(A)等于什么?理论迁移 例1 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少? 0.25 例2 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是7的结果有
多少种?
(3)向上的点数之和是5的概率是多
少?36;6;1/9. 例3 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?0.0001 例4 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.8÷30+8÷30+2÷30=0.6小 结1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的. 2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用 课件18张PPT。3.3 几何概型 3.3.1 几何概型 问题提出1.计算随机事件发生的概率,我们已经学习了哪些方法? (1)通过做试验或计算机模拟,用频率估计概率;(2)利用古典概型的概率公式计算.(1)试验中所有可能出现的基本事件只有有限个(有限性);3.在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题.(2)每个基本事件出现的可能性相等(等可能性).2.古典概型有哪两个基本特点?几何概型知识探究(一):几何概型的概念思考1:某班公交车到终点站的时间可能是11:30~12:00之间的任何一个时刻;往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这两个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?思考2:下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?思考3:上述每个扇形区域对应的圆弧的长度(或扇形的面积)和它所在位置都是可以变化的,从结论来看,甲获胜的概率与字母B所在扇形区域的哪个因素有关?哪个因素无关?与扇形的弧长(或面积)有关,与扇形区域所在的位置无关.思考4:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概型. 参照古典概型的特性,几何概型有哪两个基本特征?(1)可能出现的结果有无限多个;(2)每个结果发生的可能性相等.思考5:某班公交车到终点站的时间等可能是11:30~12:00之间的任何一个时刻,那么“公交车在11:40~11:50到终点站”这个随机事件是几何概型吗?若是,怎样理解其几何意义?知识探究(二):几何概型的概率 对于具有几何意义的随机事件,或可以化归为几何问题的随机事件,一般都有几何概型的特性,我们希望建立一个求几何概型的概率公式.思考1:有一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1m的概率是多少?你是怎样计算的?思考2:在玩转盘游戏中,对于下列两个转盘,甲获胜的概率分别是多少?你是怎样计算的?思考3:射箭比赛的箭靶涂有五个彩色的分环,从外向内依次为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会射箭比赛的靶面直径是122cm,黄心直径是12.2cm,运动员在距离靶面70m外射箭.假设射箭都等可能射中靶面内任何一点,那么如何计算射中黄心的概率?思考4:在装有5升纯净水的容器中放入一个病毒,现从中随机取出1升水,那么这1升水中含有病毒的概率是多少?你是怎样计算的?思考5:一般地,在几何概型中事件A发生的概率有何计算公式?思考6:向边长为1的正方形内随机抛掷一粒芝麻,那么芝麻落在正方形中心和芝麻不落在正方形中心的概率分别是多少?由此能说明什么问题?概率为0的事件可能会发生,概率为1的事件不一定会发生. 理论迁移 例1 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率. 例2 甲乙两人相约上午8点到9点在某地会面,先到者等候另一人20分钟,过时离去,求甲乙两人能会面的概率.1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.小结作业2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.课件12张PPT。1.1 两个基本计数原理 问题一:从甲地到乙地,可以乘火车,也可以乘汽车,一天中,火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?解:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以共有 3+2=5 种不同的走法。 分类计数原理又称为加法原理。 分类计数原理 完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,…,在第n类方式中有mn种不同的方法,那么完成这件事共有:
种不同的方法。 问题二:从甲地到乙地,要从甲地选乘火车到丙地,再于次日从丙地乘汽车到乙地。一天中,火车有3班,汽车有2班。那么两天中,从甲地到乙地共有多少种不同的走法? 这个问题与前一个问题有什么区别? 在前一个问题中,采用乘火车或汽车中的任何一种方式,都可以从甲地到乙地;而在这个问题中,必须经过先乘火车、后乘汽车两个步骤,才能从甲地到乙地. 解:因为乘火车有3种走法,乘汽车有2种走法,所以乘一次火车再接乘一次汽车从甲地到乙地,共有 3×2=6 种不同的走法。 分步计数原理 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2 种不同的方法,…,做第n步时有mn种不同的方法。那么完成这件事共有
种不同的方法。 分步计数原理又称为乘法原理。 分类计数原理(加法原理)中,“完成一件事,有n类方式”,即每种方式都可以独立地完成这件事。进行分类时,要求各类方式彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能独立完成这件事。只有满足这个条件,才能直接用加法原理,否则不可以。 分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事。如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理。 例1、某班共有男生28名、女生20名,从该班选出学生代表参加校学代会。 (1)若学校分配给该班1名代表,有多少种不同的选法? (2)若学校分配给该班2名代表,且男女生代表各1名,有多少种不同的选法? 应用这两个原理的关键是看完成这件事情是“分类”还是“分步”。 例2、在下面两个图中,使电路接通的不同方法各有多少种? 例3、为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码。在某网站设置的信箱中,
(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的密码共有多少个?
(2)密码为4位,每位均为0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个。这样的密码共有多少个? (3)密码为4到6位,每位均为0到9这10个数字中的一个。这样的密码共有多少个? 例4、(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法? (2)4名同学争夺跑步、跳高、跳远三个项目的冠军,共有多少种可能的结果? 例5、某中学的一幢5层教学楼共有3处楼梯,问从1楼到5楼共有多少种不同的走法? 例6、有n个元素的集合的子集共有多少个? 1、要从甲、乙、丙三名工人中选出两名分别上日班和晚班,有多少种不同的选法? 2、某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各一人,有多少种不同的选法? 3、用红、黄、蓝不同颜色的旗各三面,每次升一面、两面、三面在某一旗杆上纵向排列,共可以组成多少种不同的信号? 4、(1)8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数? (2)4张卡片的正、反面分别写有0与1、2与3、4与5、6与7,将其中的3张卡片排放在一起,共有多少个不同的三位数? 5、自然数2520有多少个正约数? 6、书架上原来并排放着5本不同的书,现要插入三本不同的书,那么不同的插法有多少种?课件20张PPT。第二章 统 计2.1.1 简单随机抽样2.1 随机抽样问题提出 1.我们生活在一个数字化时代,时刻都在和数据打交道,例如,产品的合格率,农作物的产量,商品的销售量,电视台的收视率等.这些数据常常是通过抽样调查而获得的,如何从总体中抽取具有代表性的样本,是我们需要研究的课题. 2.要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断? 将锅里的汤“搅拌均匀”,品尝一小勺就知道汤的味道,这是一个简单随机抽样问题,对这种抽样方法,我们从理论上作些分析.简单随机抽样知识探究(一):简单随机抽样的基本思想思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少? 思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?思考3:一般地,从N个个体中随机抽取n个个体作为样本,则每一个个体被抽到的概率是多少?思考4:食品卫生工作人员,要对校园食品店的一批小包装饼干进行卫生达标检验,打算从中抽取一定数量的饼干作为检验的样本.其抽样方法是,将这批小包装饼干放在一个麻袋中搅拌均匀,然后逐个不放回抽取若干包,这种抽样方法就是简单随机抽样.那么简单随机抽样的含义如何? 一般地,设一个总体有N个个体, 从中逐个不放回地抽取n个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.简单随机抽样的含义:思考5:根据你的理解,简单随机抽样有哪些主要特点?(4)每个个体被抽到的机会都相等,抽样具有公平性.(3)抽取的样本不放回,样本中无重复个体;(2)样本的抽取是逐个进行的,每次 只抽取一个个体;(1)总体的个体数有限; 思考6:在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?知识探究(二):简单随机抽样的方法 思考1:假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选?思考2:用抽签法(抓阄法)确定人选,具体如何操作? 用小纸条把每个同学的学号写下来放在盒子里,并搅拌均匀,然后随机从中逐个抽出5个学号,被抽到学号的同学即为参加活动的人选.思考3:一般地,抽签法的操作步骤如何?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.第二步,将号签放在一个容器中,并搅拌均匀.思考4:你认为抽签法有哪些优点和缺点?缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.思考5:从0,1,2,…,9十个数中每次随机抽取一个数,依次排列成一个数表称为随机数表(见教材P103页),每个数每次被抽取的概率是多少?思考6:假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时应如何操作? 第一步,将800袋牛奶编号为000,001,002,…,799. 第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7为起始数).思考7:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?思考8:一般地,利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何? 第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.理论迁移 例1 为调查央视春节联欢晚会的收视率,有如下三种调查方案:
方案一:通过互联网调查.
方案二:通过居民小区调查.
方案三:通过电话调查.
上述三种调查方案能获得比较准确的收视率吗?为什么? 例2 为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,试利用简单随机抽样法抽取样本,并简述其抽样过程.方法一:抽签法;方法二:随机数表法. 例3 利用随机数表法从500件产品中抽取40件进行质检.
(1)这500件产品可以怎样编号?
(2)如果从随机数表第10行第8列的数开始往左读数,则最先抽取的5件产品的编号依次是什么? 1.简单随机抽样包括抽签法和随机数表法,它们都是等概率抽样,从而保证了抽样的公平性. 3. 抽签法和随机数表法各有其操作步骤,首先都要对总体中的所有个体编号,编号的起点不是惟一的. 2.简单随机抽样有操作简便易行的优点,在总体个数较小的情况下是行之有效的抽样方法.小结作业课件19张PPT。问题提出 1.简单随机抽样有哪两种常用方法?其操作步骤分别如何?第二步,将号签放在一个容器中,并搅拌均匀.抽签法:第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.第一步,将总体中的所有个体编号.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.第二步,在随机数表中任选一个数作为起始数.随机数表法:知识探究(一):简单随机抽样的基本思想思考1:某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少? 思考2:你能用简单随机抽样对上述问题进行抽样吗?具体如何操作? 思考3:联想到学校每学期选派学生评教评学时的做法,你还有什么方法对上述问题进行抽样?你的抽样方法有何优点?体现了代表性和公平性吗?思考4:如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作? 2.1.2 系统抽样第二步,将总体平均分成60部分,每一部分含10个个体.第四步,从该号码起,每隔10个号码取一个号码,就得到一个容量为60的样本.
(如8,18,28,…,598)第三步,在第1部分中用简单随机抽样抽取一个号码(如8号).第一步,将这600件产品编号为1,2,3,…,600.思考5:上述抽样方法称为系统抽样,一般地,怎样理解系统抽样的含义? 将总体分成均衡的n个部分,再按照预先定出的规则,从每一部分中抽取1个个体,即得到容量为n的样本.知识探究(二):系统抽样的操作步骤 思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号.思考2:如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理? 先从总体中随机剔除5个个体,再均衡分成60部分.思考3:用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?思考4:如果N不能被n整除怎么办? 从总体中随机剔除N除以n的余数个个体后再分段.思考5:将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?总体中的个体数N除以样本容量n所得的商. 用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个体编号,通常是将第1段抽取的号码依次累加间隔k.思考6:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?思考7:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?第四步,按照一定的规则抽取样本.第一步,将总体的N个个体编号.第三步,在第1段用简单随机抽样确定起始个体编号l.第二步,确定分段间隔k,对编号进行分段.思考8:系统抽样适合在哪种情况下使用?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?总体中个体数比较多;系统抽样更使样本具有代表性. 思考9:我校共有360名老师,为了支持富阳的教育事业,现要从中随机抽取40名老师到其它中学任教,用系统抽样选取奔赴其它中学的教师团合适吗?思考10:在数字化时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观、具体,所以让数据说话是许多广告的常用手法.下列广告中的数据可靠吗?“现代研究证明,99%以上的人皮肤感染有螨虫…….”“……美丽润肤膏,含有多种中药成分,可以彻底清除脸部皱纹,只需10天,就能让你的肌肤得到改善.”“……瘦体减肥灵真的灵,其减肥的有效率为75%.”理论迁移 例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40的样本,用系统抽样法如何抽样?第一步,随机剔除2名学生,把余下的320名学生编号为1,2,3,…320.第四步,从该号码起,每间隔8个号码抽取1个号码,就可得到一个容量为40的样本.第三步,在第1部分用抽签法确定起始编号. 第二步,把总体分成40个部分,每个部分有8个个体. 例2一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定:如果在第一组随机抽取的号码为m,那么在第k(k=2,3,…,10)组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,求该样本的全部号码. 6,18,29,30,41,
52,63,74,85,96.2.系统抽样适合于总体的个体数较多的情形,操作上分四个步骤进行,除了剔除余数个体和确定起始号需要随机抽样外,其余样本号码由事先定下的规则自动生成,从而使得系统抽样操作简单、方便.小结作业1.系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,从而保证了抽样的公平性.课件21张PPT。2.1.3 分层抽样 问题提出 1.系统抽样的基本含义如何?系统抽样的操作步骤是什么? 将总体分成均衡的n个部分,再按照预先定出的规则,从每一部分中抽取1个个体,即得到容量为n的样本.含义:第二步,确定分段间隔k,对编号进行 分段.步骤:第四步,按照一定的规则抽取样本.第三步,在第1段用简单随机抽样确定起始个体编号l.第一步,将总体的所有个体编号. 2.设计科学、合理的抽样方法,其核心问题是保证抽样公平,并且样本具有好的代表性.如果要调查我校高一学生的平均身高,由于男生一般比女生高,故用简单随机抽样或系统抽样,都可能使样本不具有好的代表性.对于此类抽样问题,我们需要一个更好的抽样方法来解决.分层抽样知识探究(一):分层抽样的基本思想思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少? 某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查.思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?样本容量与总体个数的比例为1:100,则
高中应抽取人数为2400*1/100=24人,
初中应抽取人数为10800*1/100=108人,
小学应抽取人数为11100*1/100=111人.思考3:具体在三类学生中抽取样本时(如在10800名初中生中抽取108人),可以用哪种抽样方法进行抽样?思考4:在上述抽样过程中,每个学生被抽到的概率相等吗?思考5:上述抽样方法不仅保证了抽样的公平性,而且抽取的样本具有较好的代表性,从而是一种科学、合理的抽样方法,这种抽样方法称为分层抽样.一般地,分层抽样的基本思想是什么? 若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本.思考6:若用分层抽样从该地区抽取81名学生调查身体发育状况,那么高中生、初中生和小学生应分别抽取多少人?高中生8人,初中生36人,小学生37人.知识探究(一):分层抽样的操作步骤 某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本.思考1:该项调查应采用哪种抽样方法进行?思考2:按比例,三个年龄层次的职
工分别抽取多少人?35岁以下25人,35岁~49岁56人,
50岁以上19人.思考3:在各年龄段具体如何抽样?怎样获得所需样本?思考4:一般地,分层抽样的操作步骤如何?第一步,计算样本容量与总体的个体数之比.第四步,将各层抽取的个体合在一起,就得到所取样本.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.思考5:在分层抽样中,如果总体的个体数为N,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何计算?思考6:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理? 调节样本容量,剔除个体. 思考7:简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?简单随
机抽样系统
抽样分层
抽样抽样过程中每个个体被抽取的概率相等将总体分成均衡几部分,按规则关联抽取将总体分成几层,按比例分层抽取用简单随机抽样抽取起始号码总体中的个体数较少总体中的个体数较多总体由差异明显的几部分组成从总体中逐个不放回抽取用简单随机抽样或系统抽样对各层抽样 例1 某公司共有1000名员工,下设若干部门,现用分层抽样法,从全体员工中抽取一个容量为80的样本,已知策划部被抽取4个员工,求策划部的员工人数是多少?50人.理论迁移 例2 某中学有180名教职员工,其中教学人员144人,管理人员12人,后勤服务人员24人,设计一个抽样方案,从中选取15人去参观旅游.
用分层抽样,抽取教学人员12人,管理人员1人,后勤服务人员2人. 例3 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,完成这两项调查宜分别采用什么方法?①用分层抽样,②用简单随机抽样.例4 某地区中小学生人数的分布情况如下表所示(单位:人):请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案.
例4 某地区中小学生人数的分布情况如下表所示(单位:人):请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案.
例4 某地区中小学生人数的分布情况如下表所示(单位:人):请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案.
例4 某地区中小学生人数的分布情况如下表所示(单位:人):请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案.
请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案.请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之一的抽样方案. 例4 某地区中小学生人数的分布情况如下表所示(单位:人):小结作业2.分层抽样是按比例分别对各层进行抽样,再将各个子样本合并在一起构成所需样本.其中正确计算各层应抽取的个体数,是分层抽样过程中的重要环节.1.分层抽样利用了调查者对调查对象事先掌握的各种信息,考虑了保持样本结构与总体结构的一致性,从而使样本更具有代表性,在实际调查中被广泛应用.3.简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者相辅相成,对立统一.课件13张PPT。www.ks5u.com抽样方法小结课三种抽样方法的比较简单随机抽样
系统抽样分层抽样(1)抽样过程中每个个体被抽取的概率相等
(2) 每次抽出个体后不再将它放回,即不放回抽样
从总体中逐个抽取将总体均分成几部分,按事先确定的规则在各部分抽取
将总体分成几层,分层进行抽取
在起始部分抽样时采用简单随机抽样
各层抽样时采用简单随机抽样或系统抽样
总体中的个体数较少
总体中的个体数较多
总体由差异明显的几部分组成
例1:某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从中抽取一个容量为36的样本,适合抽取样本的方法是 ( )A.简单随机抽样
B.系统抽样
C.分层抽样
D.先从老年人中排除一人,然后分层抽样
D例题分析:例2,系统抽样又称为等距抽样,从N个个体中抽取n个个体为样本,先确定抽样间隔,即抽样距k。从第一段1,2,…,k个号码中随机抽取一个入样号码L,则L, L+k, …,L+(n-1)k号码均入样构成样本,所以每个个体的入样概率是( )A.相等的 B.不相等的
C.与L有关 D.与编号有关分析:由系统抽样的定义和特点知,在抽样过程中每个个体被抽取的概率是相等的,即每个个体的入样概率是相等的A练习:在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本。①采用随机抽样法将零件编号为00,01,…,99,抽签取出20个。②采用系统抽样法,将所有零件分成20组,每组5个,然后从每组中随机抽取1个。③采用分成抽样法,从一级品中随机抽样4个,从二级品随机抽样6个,从三级品中随机抽取10个。对于上述问题的下列说法正确的是( )A.不论采用哪一种抽样方法,这100个零件每一个被抽到的概率都是0.2B. ①,②两种抽样方法,这100件零件中每一个被抽到的概率为0.2,③不是C. ①,③两种抽样方法,这100个零件中每个零件的概率是0.2,②不是D.采用不同的抽样方法,这100个零件中每个零件被抽到的概率各不相同A例3.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A.每层等可能抽样B.每层不等可能抽样C.所有层用同一抽样比,等可能抽样D.所有层抽同样多样本容量,等可能抽样 分析:由分层抽样的定义和特点可知,所有层用同一个抽样比,等可能抽样C(1).某县有30个乡,其中山区有6个,丘陵地区有12个,平原地区有12个,要从中抽出5个乡进行调查,则应在山区抽_个乡,在丘陵地区抽_乡,在平原地区抽_个乡。221(2).高三某班有男生56人,女生42人,现在用分层抽样的方法,选出28人参加一项活动,则男生和女生的人数分别是:______________16和12练习:例4.一个地区共有人口5个乡镇30000人,其中人口比例为3∶2∶5∶2∶3。要从这30000人中抽取300个进行癌症发病分析。已知癌症与不同地理位置及水土有关,问应该采用什么样的抽样方法并写出具体过程?分析:由题意知,不同的乡镇的发病情况差异比较明显,要想使抽样更加科学合理,应利用分层抽样.首先要确定分层的层次,然后再算出各层次的比例系数,最后应采用分层抽样的方法进行抽样。①将30000人分成5层,其中一个乡镇为一层。②按照样本容量与总体容量的比例及各乡镇的人口比例随机抽取各乡镇应抽取的样本,因为总体个数为30000,样本容量为300,故比例为100∶1,这5个乡镇人口数依次为6000,4000,10000,4000,6000。通过计算,易知各乡镇应抽取的样本数分别为60,40,100,40,60个。③将这300个组在一起,即得到一组样本解:因为癌症与地理位置和水土均有关系,因而不同的乡镇的发病情况差异明显,因而应采用分层抽样方法,具体步骤:1.下列问题应采用什么样的抽样方法
(1)某乡镇12个行政村,现考察其人口中癌症的发病率.要从 3000人中抽出300人进行分析.
(2)某小区有800个家庭,其中高收入家庭200个,中等收入家庭480个,低收入家庭120个.为了解有关家用轿车购买力的某个指标,要从中抽一个容量为100的样本.
(3)从10名同学中抽取3人参加座谈会.
(4)从某厂生产的2000个电子元件中抽取200个入样.自我评价:2.某个工厂中共有职工3000人,其中中,青,老年职工的比例为5∶3∶2。要用分层抽样的方法从所有职工中抽出一个样本量为400人的样本,则中,青,老职工应分别抽取___,___,___.3.某住宅小区有居民2万户,从中随机抽取200户,调查是否安装电话,调查的结果如下表所示,则该小区已安装电话的户数估计有( )A.6500户B.300户C.19000户D.9500户4.某工厂有1003名工人,从中抽取10名工人进行体检.
①试用简单随机抽样和系统抽样两种方法进行具体实施.
②以上两种不同的抽样方法对于每一个个体被抽到的概率是否相同.谢谢合作www.ks5u.com分析:相对身体状况来说,总体是由个体差异明显的三个部分组成的,故可排除A ,B,因为人数比为28∶54∶81,且36不能整除(28+54+81),而在D中,人数比为 27 ∶54∶81=1∶2 ∶3且(27+54+81)能被36整除课件19张PPT。用样本的频率分布估计总体分布 (一)(1)统计的核心问题: 如何根据样本的情况对总体的情况作出推断复习引入: 简单随机抽样 系统抽样 分层抽样(3)通过抽样方法收集数据的目的是什么?从中寻找所包含的信息,用样本去估计总体(2)随机抽样的几种常用方法 : 我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢 ?探究:你认为,为了较为合理地确定出这个标准,需要做哪些工作? 我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢 ?探究:①采用抽样调查的方式获得样本数据
②分析样本数据来估计全市居民用水量的分布情况下表给出100位居民的月均用水量表
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。表格则是通过改变数据的构成形式,为我们提供解释数据的新方式讨论:如何分析数据?根据这些数据你能得出用水量其他信息吗?为此我们要对这些数据进行整理与分析〈一〉频率分布的概念:
频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布 〈二〉画频率分布直方图其一般步骤为:
(1)计算一组数据中最大值与最小值的差,即求极差
(2)决定组距与组数
(3)将数据分组
(4)列频率分布表
(5)画频率分布直方图第一步: 求极差: (数据组中最大值与最小值的差距) 最大值= 4.3 最小值= 0.2
所以极差= 4.3-0.2 = 4.1第二步: 决定组距与组数: (强调取整) 当样本容量不超过100时, 按照数据的多少, 常分成5~12组.
为方便组距的选择应力求“取整”.
本题如果组距为0.5(t). 则 第三步: 将数据分组:( 给出组的界限) 所以将数据分成9组较合适. [0, 0.5), [0.5, 1), [1, 1.5),……[4, 4.5) 共9组. 第四步: 列频率分布表. 组距=0.5 0.040.080.080.160.30.150.440.220.250.512.000.020.040.040.080.10.30.150.05第五步: 画出频率分布直方图. 频率/组距 月均用水量/t (组距=0.5)
小长方形的面积=?
小长方形的面积总和=?
月均用水量最多的在哪个区间?请大家阅读第68页,直方图有哪些优点和缺点?频率分布直方图的特征:
从频率分布直方图可以清楚的看出数据分布的总体趋势。
从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。思考:
1.频率分布表与频率分布直方图的区别?频率分布表列出的是在各个不同区间内取值的频率。
频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率。2.如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-2和频率分布直方图2.2-1,
你能对制定月用水量标准提出建议吗 ?3.将组距确定为1,作出教材P66页 居民月均用水量的频率分布直方图 4.谈谈两种组距下,你对图的印象?同一个样本数据,绘制出来的分布图是唯一的吗? (同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断 ) 练 习:1.有一个容量为50的样本数据的分组的频数如下:[12.5, 15.5) 3[15.5, 18.5) 8[18.5, 21.5) 9[21.5, 24.5) 11[24.5, 27.5) 10[27.5, 30.5) 5[30.5, 33.5) 4(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据频率分布直方图估计,数据落在[15.5, 24.5)的百分比是多少? 解:组距为3 分组 频数 频率 频率/ 组距[12.5, 15.5) 3[15.5, 18.5) 8[18.5, 21.5) 9[21.5, 24.5) 11[24.5, 27.5) 10[27.5, 30.5) 5[30.5, 33.5) 40.06
0.16
0.18
0.22
0.20
0.10
0.080.020
0.053
0.060
0.073
0.067
0.033
0.027频率分布直方图如下:0.0100.0200.0300.0400.05012.515.50.0600.070练习:2 .投掷一枚均匀骰子44次的记录是:现对这些数据进行整理,试画出频数分布直方图. 第一步:写出样本可能出现的一切数值,即:
1,2,3,4,5,6 共6个数.(数据分组)第二步:列出频率分布表:组距=1第三步: 画频率分布直方图小结:
画频率分布直方图的步骤:
第一步: 求极差: (数据组中最大值与最小值的差距)
第二步: 决定组距与组数: (强调取整)
第三步: 将数据分组 ( 给出组的界限)
第四步: 列频率分布表. (包括分组、频数、频率、频率/组距)
第五步: 画频率分布直方图(在频率分布表的基础上绘制,横坐标为样本数据尺寸,纵坐标为频率/组距.) 组距:指每个小组的两个端点的距离,组距
组数:将数据分组,当数据在100个以内时,
按数据多少常分5-12组。注意(2)纵坐标为:课件15张PPT。用样本的频率分布
估计总体分布
(二)回忆:绘制频率分布直方图有哪几个步骤呢? (一)频率分布折线图:
画好频率分布图后,我们把频率分布直方图中各小长方形上端连接起来,得到的图形.画出频率分布折线图. 频率/组距 月均用水量/t (取组距中点, 并连线 ) 在样本频率分布直方图中,当样本容量增加,作图时所分的组数增加,组距减少,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线. 它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息. 总体密度曲线:1.对于任何一个总体,它的密度曲线是不是一定存在?它的密度曲线是否可以被非常准确地画出来?思考2.图中阴影部分的面积表示什么?2.总体在范围(a,b)内取值的百分比 1.实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确。例: 甲乙两人比赛得分记录如下:
甲:13, 51, 23, 8, 26, 38, 16, 33, 14, 28, 39
乙:49, 24, 12, 31, 50, 31, 44, 36, 15, 37, 25, 36, 39
用茎叶图表示两人成绩,说明哪一个成绩好.甲 乙0
1
2
3
4
5
2, 5
5, 4
1, 6, 1, 6, 7, 9
4, 9
0 8
4, 6, 3
3, 6, 8
3, 8, 9
1 叶 茎 叶(二). 茎叶图 (一种被用来表示数据的图) 茎叶图 当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图 画茎叶图的步骤:1.将每个数据分为茎(高位)和叶(低位)两部分,在此例中,茎为十位上的数字,叶为个位上的数字;
2.将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;
3.将各个数据的叶按大小次序
写在其茎右(左)侧.(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。茎叶图的特征:频数 茎 叶
2 10 7, 8
11 11 2, 7, 6, 3, 6, 8, 6, 7, 2, 2,0
13 12 6, 8, 4, 2, 7, 8, 6, 1, 0, 4, 3, 2, 0
4 13 4, 2, 3, 0下表一组数据是某车间30名工人加工零件的个数, 设计一个茎叶图表示这组数据,并说明这一车间的生产情况.练习: 小结:
1.不易知一个总体的分布情况时,往往从总体中抽取一个样本,用样本的频率分布去估计总体的频率分布,样本容量越大,估计就越精确.
2. 目前有:频率分布表、直方图、茎叶图.
3.当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
布置作业:课件19张PPT。2.2 用样本估计总体2.2.2用样本的数字特征估计总体的
数字特征 第一课时 问题提出1.对一个未知总体,我们常用样本的频率分布估计总体的分布,其中表示样本数据的频率分布的基本方法有哪些? 2.美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:
甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49.
乙运动员得分:8,13,14,16,23,26,
28,38,39,51,31,29. 如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征. 甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49.
乙运动员得分:8,13,14,16,23,26,
28,38,39,51,31,29.用样本数字特征估计总体数字特征知识探究(一):众数、中位数和平均数 思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数? 思考2:在城市居民月均用水量样本数据的频率分布直方图中,你认为众数应在哪个小矩形内?由此估计总体的众数是什么? 思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么? 0.5-0.04-0.08-0.15-0.22=0.01,0.01÷0.5=0.02,中位数是2+0.02=2.02. 思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?0.25,0.75,1.25,1.75,2.25,
2.75,3.25,3.75,4.25. 思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25× 0.06+3.75×0.04+4.25×0.02=2.02(t).
平均数是2.02. 平均数与中位数相等,是必然还是巧合?思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗? 频率分布直方图损失了一些样本数据,得到的是一个估计值,且所得估值与数据分组有关.注:在只有样本频率分布直方图的情况下,我们可以按上述方法估计众数、中位数和平均数,并由此估计总体特征.思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义? 如:样本数据收集有个别差错不影响中位数;大学毕业生凭工资中位数找单位可能收入较低.
平均数大于(或小于)中位数,说明样本数据中存在许多较大(或较小)的极端值.
这句话具有模糊性甚至蒙骗性,其中收入水平是员工工资的某个中心点,它可以是众数、中位数或平均数.知识探究(二):标准差 样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度. 思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:
甲:7 8 7 9 5 4 9 10 7 4
乙:9 5 7 8 7 6 8 6 7 7
甲、乙两人本次射击的平均成绩分别为多少环?思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?环数甲的成绩比较分散,极差较大,乙的成绩相对集中,比较稳定.环数思考3:对于样本数据x1,x2,…,xn,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算? 思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s表示.假设样本数据x1,x2,…,xn的平均数为,则标准差的计算公式是: 那么标准差的取值范围是什么?标准差为0的样本数据有何特点? s≥0,标准差为0的样本数据都相等. 标准差越大离散程度越大,数据较分散;标准差越小离散程度越小,数据较集中在平均数周围. 知识迁移 s甲=2,s乙=1.095. 课件18张PPT。ks5u精品课件2.2 用样本估计总体2.2.2用样本的数字特征估计总体的
数字特征 第二课时 ks5u精品课件知识回顾1.如何根据样本频率分布直方图,分别估计总体的众数、中位数和平均数?(1)众数:最高矩形下端中点的横坐标.(2)中位数:直方图面积平分线与横轴交点的横坐标.(3)平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和. ks5u精品课件2.对于样本数据x1,x2,…,xn,其标准差如何计算? ks5u精品课件样本数字特征例题分析ks5u精品课件知识补充1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.ks5u精品课件3.对于城市居民月均用水量样本数据,其平均数 ,标准差s=0.868.
在这100个数据中,
落在区间( -s, +s)=[1.105,2.841]外的有28个;
落在区间( -2s, +2s)=[0.237,3.709]外的只有4个;
落在区间( -3s, +3s)=[-0.631,4.577]外的有0个.ks5u精品课件 一般地,对于一个正态总体,数据落在区间( -s, +s)、 ( -2s, +2s)、( -3s, +3s)内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅读与思考”). ks5u精品课件例题分析例1 画出下列四组样本数据的条形图,
说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;ks5u精品课件(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.
ks5u精品课件例2 甲、乙两人同时生产内径为25.40mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各随机抽取20件,量得其内径尺寸如下(单位:mm):甲 :
25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39乙:
25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 26.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48 从生产零件内径的尺寸看,谁生产的零件质量较高? ks5u精品课件 甲生产的零件内径更接近内径标准,且稳定程度较高,故甲生产的零件质量较高. 说明:1.生产质量可以从总体的平均数与标准差两个角度来衡量,但甲、乙两个总体的平均数与标准差都是不知道的,我们就用样本的平均数与标准差估计总体的平均数与标准差.
2.问题中25.40mm是内径的标准值,而不是总体的平均数.ks5u精品课件例3 以往招生统计显示,某所大学录取的新生高考总分的中位数基本稳定在550分,若某同学今年高考得了520分,他想报考这所大学还需收集哪些信息?要点:(1)查往年录取的新生的平均分数.若平均数小于中位数很多,说明最低录取线较低,可以报考;
(2)查往年录取的新生高考总分的标准差.若标准差较大,说明新生的录取分数较分散,最低录取线可能较低,可以考虑报考.ks5u精品课件例4 在去年的足球甲A联赛中,甲队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;乙队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4.你认为下列说法是否正确,为什么? (1)平均来说甲队比乙队防守技术好;
(2)乙队比甲队技术水平更稳定;
(3)甲队有时表现很差,有时表现又非常 好;
(4)乙队很少不失球.ks5u精品课件例5 有20种不同的零食,它们的热量含量如下:
110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140(1)以上20个数据组成总体,求总体平均数与总体标准差;
(2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.ks5u精品课件(1)总体平均数为199.75,总体标准差为95.26.(1)以上20个数据组成总体,求总体平均数与总体标准差;
(2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.(2)可以用抽签法抽取样本,样本的平均数和标准差与抽取的样本有关.ks5u精品课件小结作业1.对同一个总体,可以抽取不同的样本,相应的平均数与标准差都会发生改变.如果样本的代表性差,则对总体所作的估计就会产生偏差;如果样本没有代表性,则对总体作出错误估计的可能性就非常大,由此可见抽样方法的重要性.ks5u精品课件2.在抽样过程中,抽取的样本是具有随机性的,如从一个包含6个个体的总体中抽取一个容量为3的样本就有20中可能抽样,因此样本的数字特征也有随机性.
用样本的数字特征估计总体的数字特征,是一种统计思想,没有惟一答案.ks5u精品课件3.在实际应用中,调查统计是一个探究性学习过程,需要做一系列工作,我们可以把学到的知识应用到自主研究性课题中去.作业:
P82习题2.2 A组:5,6.
B组:1.课件20张PPT。第一课时 2.3 变量间的相关关系
2.3.1 变量之间的相关关系
2.3.2 两个变量的线性相关问题提出1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3.我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.变量之间的相关关系
和线性相关知识探究(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗? 思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何? 自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.思考4:对于一个变量,可以控制其数量大小的变量称为可控变量,否则称为随机变量,那么相关关系中的两个变量有哪几种类型? (1)一个为可控变量,另一个为随机变量;
(2)两个都是随机变量.知识探究(二):散点图 【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗? 思考3:上图叫做散点图,你能描述一下散点图的含义吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图. 思考4:观察散点图的大致趋势,人的年龄与人体脂肪含量具有什么相关关系? 思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何? 思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点? 一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.思考7:你能列举一些生活中的变量成正相关或负相关的实例吗? 理论迁移例1 在下列两个变量的关系中,哪些是相关关系?
①正方形边长与面积之间的关系;
②作文水平与课外阅读量之间的关系;
③人的身高与年龄之间的关系;
④降雪量与交通事故的发生率之间的关系.例2 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关. 1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法. 小结作业课件21张PPT。2.3 变量间的相关关系
2.3.1 变量之间的相关关系
2.3.2 两个变量的线性相关
第二课时
问题提出1. 两个变量之间的相关关系的含义如何?成正相关和负相关的两个相关变量的散点图分别有什么特点?自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系.正相关的散点图中的点散布在从左下角到右上角的区域,负相关的散点图中的点散布在从左上角到右下角的区域 2.观察人体的脂肪含量百分比和年龄的样本数据的散点图,这两个相关变量成正相关.我们需要进一步考虑的问题是,当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢?对此,我们从理论上作些研究.回归直线及其方程知识探究(一):回归直线 思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗? 思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点? 这些点大致分布在一条直线附近.思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?知识探究(二):回归方程 在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计. 思考1:回归直线与散点图中各点的位置应具有怎样的关系? 整体上最接近 思考2:对于求回归直线方程,你有哪些想法? 可以用 或 ,
其中 . 思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),…,(xn,yn),设其回归方程为 可以用哪些数量关系来刻画各样本点与回归直线的接近程度? 思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适? 思考5:根据有关数学原理分析,当
时,总体偏差 为最小,这样
就得到了回归方程,这种求回归方程的方法叫做最小二乘法.回归方程
中, 的几何意义分别是什么?思考6:利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为
,由此我们可以根据一个人个年龄预测其体内脂肪含量的百分比的回归值.若某人37岁,则其体内脂肪含量的百分比约为多少?20.9%理论迁移 例 有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表: (1)画出散点图;
(2)从散点图中发现气温与热饮杯数之 间关系的一般规律;
(3)求回归方程;
(4)如果某天的气温是2℃,预测这天卖出的热饮杯数.当x=2时,y=143.063.小结作业1.求样本数据的线性回归方程,可按下列步骤进行:第一步,计算平均数 , 第二步,求和 , 第三步,计算 第四步,写出回归方程 2.回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性. 3.对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.