浙教版数学七上知识点突破训练:有理数的认识及其分类
一、夯实基础
1.(2023七上·余杭期中)如果m是一个有理数,那么﹣m是( )
A.负有理数 B.非零有理数 C.非正有理数 D.有理数
【答案】D
【知识点】相反数及有理数的相反数;有理数及其分类
【解析】【解答】解:∵m是一个有理数,
∴-m就是m的相反数,
根据有理数的定义可知,m可能是正有理数,零,负有理数,
故﹣m是正有理数,零,负有理数. 所以﹣m是有理数.
故答案为:D.
【分析】由于-m是m的相反数,而一个正有理数的相反数是一个负有理数,0的相反数是0,一个负有理数的相反数是一个正有理数,据此可得答案.
2.(2023七上·安吉期中)在π,,,3.1415926,-,3.121121112…(每两个2之间依次多一个1)中,属于有理数的有( )
A.6个 B.4个 C.3个 D.2个
【答案】D
【知识点】有理数的概念
【解析】【解答】解:有理数有:, 3.1415926, 共2个.
故答案为:D.
【分析】根据有理数的定义:整数和分数统称为有理数,有限小数与无限循环小数都可以化为分数,即可得出答案.
3.下列各组量中,不是互为相反意义的量的是( )
A.收入200元与支出20元 B.上升10米与下降7米
C.超过0.05米与不足0.03米 D.增大2岁与减少2升
【答案】D
【知识点】有理数及其分类
【解析】【解答】A,B,C项正确;D项,增大与减少意义相反,但2岁与2升是两种完全不相同的量,故错误,选D.
【分析】此题考查的是用正负数表示具有相反意义的量.
4.下列说法中不正确的是( )
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
C.-2000既是负数,也是整数,但不是有理数
D.0是非正数
【答案】C
【知识点】有理数及其分类
【解析】【解答】A,B,D项说法正确;C项,-2000是有理数,故错误.
【分析】此题考查有理数的概念及分类.容易混淆的是“0是非正数”,非正数指的不是正数的数,即是0或负数的数,所以0是非正数;非负数指的是0或正数的数,如0是非负数,3是非负数.
5.(2019七上·温州月考)有理数中,最大的负整数是 .
【答案】-1
【知识点】有理数及其分类
【解析】【解答】解:有理数中,最大的负整数是﹣1,
故答案为:﹣1.
【分析】根据小于零的整数是负整数,再根据最大的负整数,可得答案.
6.用“有”、“没有”填空:
在有理数集合里, 最大的负数, 最小的正数, 绝对值最小的有理数.
【答案】没有 ;没有 ;有
【知识点】有理数及其分类
【解析】【解答】解:没有没有最小的正数;没有最大的负数,因为正数和负数都有无数个,它们都没有最大和最小的值;
因为0的绝对值是0,任何数的绝对值都大于等于0,
所以绝对值最小的有理数是0.
故答案为:没有、没有、有.
【分析】(1)在数轴上所有大于0的数都是正数x,x无限接近于0;所有小于0的数都是负数y,y无限接近于0;
(2)由绝对值的意义,我们可以知道:①一个正数的绝对值是它本身;②0的绝对值是0;③一个负数的绝对值是它的相反数; 由此可以看出,不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),即对任意有理数a,总有|a|≥0.所以,有绝对值最小的数是0.
7.某县教体局为某中学七年级每位新生建立学籍档案编号,设定末尾用1表示男生,用2表示女生,如果“202102151”表示“2021年人学的2班15号的同学,是位男生”,那么今年2023年人学的1班23号女生的学籍档案编号是“ “
【答案】202301232
【知识点】有理数及其分类
【解析】【解答】 解: 由题意得,2023年人学的1班23号女生的学籍档案编号是202301232.
故答案为:202301232.
【分析】 根据前四位表示入学时间,五六位表示班级,七八位表示学籍号,末尾表示男女,可得答案.
8.依据生活情境回答问题:
(1)当夜空中繁星密布时,小贝贝在数星星,他所用到的数属于什么数?
(2)从一把测量用的刻度尺上可以读出哪几类有理数?
(3)从一支测量气温用的温度计上可以读出哪几类有理数?
【答案】(1)当夜空中繁星密布时,小贝贝在数星星,他所用到的数属于正整数
(2)从一把测量用的刻度尺上可以读出数有:0,正整数,正分数;
(3)从一支测量气温用的温度计上可以读出的数有:正数,负数,0
【知识点】有理数及其分类
【解析】【分析】(1)数星星用到的数为正整数;
(2)刻度尺可以读出0,正整数,正分数;
(3)一支测量气温用的温度计上可以读出正数,负数与0.
二、能力提升
9.已知a和b是有理数,若a+b=0,a2+b2≠0,则在a和b之间一定( )
A.存在负整数 B.存在正整数
C.存在一个正数和负数 D.不存在正分数
【答案】C
【知识点】有理数及其分类
【解析】【解答】解:本题用排除法即可.
令a=0.5,b=﹣0.5,a,b间无非0整数,
A、B即可排除.无论a,b何值,a,b必然一正一负.
故选C.
【分析】本题可用排除法.代入特殊值即可,令a=0.5,b=﹣0.5,故A、B即可排除,无论a,b何值,a,b必然一正一负,故D不正确.
10.下列各数﹣2,3,﹣(﹣0.75),﹣5.4,|﹣9|,﹣3,0,4中,属于整数的有m个,属于正数的有n个,则m,n的值为( )
A.6,4 B.8,5 C.4,3 D.3,6
【答案】A
【知识点】有理数及其分类
【解析】【解答】解:﹣2,3,|﹣9|,﹣3,0,4是整数,m=6,
3,﹣(﹣0.75),|﹣9|,4是正数,n=4,
故选:A.
【分析】根据象﹣1,2,3…是整数,可得整数,根据大于零的数是正数,可得正数.
11.(2020七上·椒江期中)下列说法:①0是最小的整数;②最大的负整数是﹣1;③正有理数和负有理数统称有理数;④一个有理数的平方是正数.其中正确的有( )
A.1 个 B.2个 C.3个 D.4个
【答案】A
【知识点】有理数及其分类
【解析】【解答】解:①0是绝对值最小的整数,没有最小的整数,故①错误;
②-1是最大的负整数,故②正确;
③正有理数,负有理数和0统称为有理数,故③错误;
④一个有理数的平方式正数或0,故④错误;
故答案为:A.
【分析】根据0的意义可知①错误;最大的负整数为-1可知②正确;由有理数的定义可知③错误;由一个数的平方为非负数可知④错误;从而可得答案.
12.(2023七上·镇海区期中)已知下列各数:,其中负有理数有( )
A.1个 B.2个 C.3个 D.4个
【答案】C
【知识点】有理数及其分类
【解析】【解答】解:这组数据均为有理数,
∴负有理数为:共三个,
故答案为:C.
【分析】根据负有理数的定义:所有小于零的有理数均为负有理数,据此求解即可.
13. 有下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有 (填序号).
【答案】②③④⑥⑦
【知识点】有理数及其分类
【解析】【解答】解: ①0不是正数,故①不正确;
②0是整数,故②正确;
③0是自然数,故③正确;
④0是最小的自然数,故④正确;
⑤0不是正数,故⑤不正确;
⑥0是最小的非负数,故⑥正确;
⑦0是偶数,故⑦正确;
⑧0不一定表示没有,故⑧不正确,
∴正确的说法有②③④⑥⑦.
故答案为:②③④⑥⑦.
【分析】根据有理数的定义和分类,逐项进行判断,即可得出答案.
14.将下列各数填在相应的集合里.
﹣3.8,﹣20%,4.3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣32
整数集合:{ …};
分数集合:{ …};
正数集合:{ …};
负数集合:{ …}.
在以上已知的数据中,最大的有理数是 ,最小的有理数是 .
【答案】(﹣2)2,0,﹣32;﹣3.8,﹣20%,4.3,﹣|﹣|,﹣(﹣);4.3,(﹣2)2,﹣(﹣);﹣3.8,﹣20%,﹣|﹣|,﹣32;4.3;﹣32
【知识点】有理数及其分类
【解析】【解答】解:整数集合:{(﹣2)2,0,﹣32,…};
分数集合:{﹣3.8,﹣20%,4.3,﹣|﹣|,﹣(﹣),…};
正数集合:{ 4.3,(﹣2)2,﹣(﹣),…};
负数集合:{﹣3.8,﹣20%,﹣|﹣|,﹣32,…}.
在已知的数据中,最大的数是4.3,最小的数是﹣32.
故答案为:4.3,﹣32.
【分析】有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数,根据以上内容判断即可.
三、拓展创新
15.(2023七上·瑞安月考)已知是最小的正整数,是最大的负整数,互为相反数,x, y互为倒数,则的值是( )
A. B. C. D.
【答案】B
【知识点】有理数的倒数;有理数的分类;相反数的意义与性质;求代数式的值-直接代入求值
【解析】【解答】解:∵m是最小的正整数,是最大的负整数,a,b互为相反数,x, y互为倒数,
∴m=1,n=-1,a+b=0,xy=1,
∴原式=1+(-1)+0-1=-1.
故答案为:B.
【分析】根据题意得出m=1,n=-1,a+b=0,xy=1,代入原式进行计算,即可得出答案.
16.在“喜羊羊与灰太狼”的故事中,“村长”念了这样一道题目:“喜羊羊”表示最小的正整数,“美羊羊”表示绝对值最小的有理数,“懒羊羊”表示最大的负整数,如果把三者加在一起也表示其中一只羊,那么这只羊是: .
【答案】美羊羊
【知识点】有理数及其分类
【解析】【解答】解:由题意得:“喜羊羊”表示最小的正整数是1,
“美羊羊”表示绝对值最小的有理数是0,
“懒羊羊”表示最大的负整数为﹣1,
∵1+0+(﹣1)=0,
∴把三者加在一起也表示其中这只羊是:美羊羊,
故答案为:美羊羊.
【分析】首先确定:“喜羊羊”表示最小的正整数是1,“美羊羊”表示绝对值最小的有理数是0,“懒羊羊”表示最大的负整数为﹣1,再求和即可确定答案.
17.(2023七上·义乌期中)一个数值转换器,如图所示:
(1)当输入的x为16时.输出的y值是 ;
(2)若输出的y是,请写出两个满足要求的x值: .
【答案】;3和9
【知识点】无理数的概念;有理数的概念;求算术平方根
【解析】【解答】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,
∴4的算术平方根是2,2是有理数,2不能输出,
∴2的算术平方根是,是无理数,输出,
故答案为:;
(2)∵9的算术平方根是3,3的算术平方根是,
∴x值可以是3和9.
故答案为:3和9(答案不唯一).
【分析】(1)把x=16代入数值转换器,求其算术平方根,直至算术平方根为无理数即可;
(2)根据数值转换器及输出的y是,确定出x值即可(答案不唯一).
18.某中学老师为减轻学生们的负担,让同学们做了一个游戏,他说:“如果张华和李明分别代表不大于5的正整数m、n,且是最简真分数,那么形如的数一共有多少个不同的有理数?”
【答案】解:形如的数一共有9个不同的有理数.
【知识点】有理数及其分类
【解析】【分析】根据题意知,形如的数一共有,,,,,,,,共9个.
19.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,
(1)集合{2016} 黄金集合,集合{﹣1,2017} 黄金集合;(两空均填“是”或“不是”)
(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由
(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.
【答案】(1)不是;是
(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.
∵2016﹣a中a的值越大,则2016﹣a的值越小,
∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.
(3)该集合共有24个元素.
理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,
∴黄金集合中的元素一定是偶数个.
∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,
又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,
∴这个黄金集合中的元素个数为:12×2=24(个).
【知识点】正数和负数的认识及应用;有理数及其分类
【解析】【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;
∵2016﹣2017=﹣1,
∴集合{﹣1,2016}是黄金集合.
故答案为:不是,是.
【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;
(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;
(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.
1 / 1浙教版数学七上知识点突破训练:有理数的认识及其分类
一、夯实基础
1.(2023七上·余杭期中)如果m是一个有理数,那么﹣m是( )
A.负有理数 B.非零有理数 C.非正有理数 D.有理数
2.(2023七上·安吉期中)在π,,,3.1415926,-,3.121121112…(每两个2之间依次多一个1)中,属于有理数的有( )
A.6个 B.4个 C.3个 D.2个
3.下列各组量中,不是互为相反意义的量的是( )
A.收入200元与支出20元 B.上升10米与下降7米
C.超过0.05米与不足0.03米 D.增大2岁与减少2升
4.下列说法中不正确的是( )
A.-3.14既是负数,分数,也是有理数
B.0既不是正数,也不是负数,但是整数
C.-2000既是负数,也是整数,但不是有理数
D.0是非正数
5.(2019七上·温州月考)有理数中,最大的负整数是 .
6.用“有”、“没有”填空:
在有理数集合里, 最大的负数, 最小的正数, 绝对值最小的有理数.
7.某县教体局为某中学七年级每位新生建立学籍档案编号,设定末尾用1表示男生,用2表示女生,如果“202102151”表示“2021年人学的2班15号的同学,是位男生”,那么今年2023年人学的1班23号女生的学籍档案编号是“ “
8.依据生活情境回答问题:
(1)当夜空中繁星密布时,小贝贝在数星星,他所用到的数属于什么数?
(2)从一把测量用的刻度尺上可以读出哪几类有理数?
(3)从一支测量气温用的温度计上可以读出哪几类有理数?
二、能力提升
9.已知a和b是有理数,若a+b=0,a2+b2≠0,则在a和b之间一定( )
A.存在负整数 B.存在正整数
C.存在一个正数和负数 D.不存在正分数
10.下列各数﹣2,3,﹣(﹣0.75),﹣5.4,|﹣9|,﹣3,0,4中,属于整数的有m个,属于正数的有n个,则m,n的值为( )
A.6,4 B.8,5 C.4,3 D.3,6
11.(2020七上·椒江期中)下列说法:①0是最小的整数;②最大的负整数是﹣1;③正有理数和负有理数统称有理数;④一个有理数的平方是正数.其中正确的有( )
A.1 个 B.2个 C.3个 D.4个
12.(2023七上·镇海区期中)已知下列各数:,其中负有理数有( )
A.1个 B.2个 C.3个 D.4个
13. 有下列说法:①0是正数;②0是整数;③0是自然数;④0是最小的自然数;⑤0是最小的正数;⑥0是最小的非负数;⑦0是偶数;⑧0就表示没有.其中正确的说法有 (填序号).
14.将下列各数填在相应的集合里.
﹣3.8,﹣20%,4.3,﹣|﹣|,(﹣2)2,0,﹣(﹣),﹣32
整数集合:{ …};
分数集合:{ …};
正数集合:{ …};
负数集合:{ …}.
在以上已知的数据中,最大的有理数是 ,最小的有理数是 .
三、拓展创新
15.(2023七上·瑞安月考)已知是最小的正整数,是最大的负整数,互为相反数,x, y互为倒数,则的值是( )
A. B. C. D.
16.在“喜羊羊与灰太狼”的故事中,“村长”念了这样一道题目:“喜羊羊”表示最小的正整数,“美羊羊”表示绝对值最小的有理数,“懒羊羊”表示最大的负整数,如果把三者加在一起也表示其中一只羊,那么这只羊是: .
17.(2023七上·义乌期中)一个数值转换器,如图所示:
(1)当输入的x为16时.输出的y值是 ;
(2)若输出的y是,请写出两个满足要求的x值: .
18.某中学老师为减轻学生们的负担,让同学们做了一个游戏,他说:“如果张华和李明分别代表不大于5的正整数m、n,且是最简真分数,那么形如的数一共有多少个不同的有理数?”
19.把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,
(1)集合{2016} 黄金集合,集合{﹣1,2017} 黄金集合;(两空均填“是”或“不是”)
(2)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由
(3)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.
答案解析部分
1.【答案】D
【知识点】相反数及有理数的相反数;有理数及其分类
【解析】【解答】解:∵m是一个有理数,
∴-m就是m的相反数,
根据有理数的定义可知,m可能是正有理数,零,负有理数,
故﹣m是正有理数,零,负有理数. 所以﹣m是有理数.
故答案为:D.
【分析】由于-m是m的相反数,而一个正有理数的相反数是一个负有理数,0的相反数是0,一个负有理数的相反数是一个正有理数,据此可得答案.
2.【答案】D
【知识点】有理数的概念
【解析】【解答】解:有理数有:, 3.1415926, 共2个.
故答案为:D.
【分析】根据有理数的定义:整数和分数统称为有理数,有限小数与无限循环小数都可以化为分数,即可得出答案.
3.【答案】D
【知识点】有理数及其分类
【解析】【解答】A,B,C项正确;D项,增大与减少意义相反,但2岁与2升是两种完全不相同的量,故错误,选D.
【分析】此题考查的是用正负数表示具有相反意义的量.
4.【答案】C
【知识点】有理数及其分类
【解析】【解答】A,B,D项说法正确;C项,-2000是有理数,故错误.
【分析】此题考查有理数的概念及分类.容易混淆的是“0是非正数”,非正数指的不是正数的数,即是0或负数的数,所以0是非正数;非负数指的是0或正数的数,如0是非负数,3是非负数.
5.【答案】-1
【知识点】有理数及其分类
【解析】【解答】解:有理数中,最大的负整数是﹣1,
故答案为:﹣1.
【分析】根据小于零的整数是负整数,再根据最大的负整数,可得答案.
6.【答案】没有 ;没有 ;有
【知识点】有理数及其分类
【解析】【解答】解:没有没有最小的正数;没有最大的负数,因为正数和负数都有无数个,它们都没有最大和最小的值;
因为0的绝对值是0,任何数的绝对值都大于等于0,
所以绝对值最小的有理数是0.
故答案为:没有、没有、有.
【分析】(1)在数轴上所有大于0的数都是正数x,x无限接近于0;所有小于0的数都是负数y,y无限接近于0;
(2)由绝对值的意义,我们可以知道:①一个正数的绝对值是它本身;②0的绝对值是0;③一个负数的绝对值是它的相反数; 由此可以看出,不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),即对任意有理数a,总有|a|≥0.所以,有绝对值最小的数是0.
7.【答案】202301232
【知识点】有理数及其分类
【解析】【解答】 解: 由题意得,2023年人学的1班23号女生的学籍档案编号是202301232.
故答案为:202301232.
【分析】 根据前四位表示入学时间,五六位表示班级,七八位表示学籍号,末尾表示男女,可得答案.
8.【答案】(1)当夜空中繁星密布时,小贝贝在数星星,他所用到的数属于正整数
(2)从一把测量用的刻度尺上可以读出数有:0,正整数,正分数;
(3)从一支测量气温用的温度计上可以读出的数有:正数,负数,0
【知识点】有理数及其分类
【解析】【分析】(1)数星星用到的数为正整数;
(2)刻度尺可以读出0,正整数,正分数;
(3)一支测量气温用的温度计上可以读出正数,负数与0.
9.【答案】C
【知识点】有理数及其分类
【解析】【解答】解:本题用排除法即可.
令a=0.5,b=﹣0.5,a,b间无非0整数,
A、B即可排除.无论a,b何值,a,b必然一正一负.
故选C.
【分析】本题可用排除法.代入特殊值即可,令a=0.5,b=﹣0.5,故A、B即可排除,无论a,b何值,a,b必然一正一负,故D不正确.
10.【答案】A
【知识点】有理数及其分类
【解析】【解答】解:﹣2,3,|﹣9|,﹣3,0,4是整数,m=6,
3,﹣(﹣0.75),|﹣9|,4是正数,n=4,
故选:A.
【分析】根据象﹣1,2,3…是整数,可得整数,根据大于零的数是正数,可得正数.
11.【答案】A
【知识点】有理数及其分类
【解析】【解答】解:①0是绝对值最小的整数,没有最小的整数,故①错误;
②-1是最大的负整数,故②正确;
③正有理数,负有理数和0统称为有理数,故③错误;
④一个有理数的平方式正数或0,故④错误;
故答案为:A.
【分析】根据0的意义可知①错误;最大的负整数为-1可知②正确;由有理数的定义可知③错误;由一个数的平方为非负数可知④错误;从而可得答案.
12.【答案】C
【知识点】有理数及其分类
【解析】【解答】解:这组数据均为有理数,
∴负有理数为:共三个,
故答案为:C.
【分析】根据负有理数的定义:所有小于零的有理数均为负有理数,据此求解即可.
13.【答案】②③④⑥⑦
【知识点】有理数及其分类
【解析】【解答】解: ①0不是正数,故①不正确;
②0是整数,故②正确;
③0是自然数,故③正确;
④0是最小的自然数,故④正确;
⑤0不是正数,故⑤不正确;
⑥0是最小的非负数,故⑥正确;
⑦0是偶数,故⑦正确;
⑧0不一定表示没有,故⑧不正确,
∴正确的说法有②③④⑥⑦.
故答案为:②③④⑥⑦.
【分析】根据有理数的定义和分类,逐项进行判断,即可得出答案.
14.【答案】(﹣2)2,0,﹣32;﹣3.8,﹣20%,4.3,﹣|﹣|,﹣(﹣);4.3,(﹣2)2,﹣(﹣);﹣3.8,﹣20%,﹣|﹣|,﹣32;4.3;﹣32
【知识点】有理数及其分类
【解析】【解答】解:整数集合:{(﹣2)2,0,﹣32,…};
分数集合:{﹣3.8,﹣20%,4.3,﹣|﹣|,﹣(﹣),…};
正数集合:{ 4.3,(﹣2)2,﹣(﹣),…};
负数集合:{﹣3.8,﹣20%,﹣|﹣|,﹣32,…}.
在已知的数据中,最大的数是4.3,最小的数是﹣32.
故答案为:4.3,﹣32.
【分析】有理数包括整数和分数,整数包括正整数、0、负整数,分数包括正分数和负分数,根据以上内容判断即可.
15.【答案】B
【知识点】有理数的倒数;有理数的分类;相反数的意义与性质;求代数式的值-直接代入求值
【解析】【解答】解:∵m是最小的正整数,是最大的负整数,a,b互为相反数,x, y互为倒数,
∴m=1,n=-1,a+b=0,xy=1,
∴原式=1+(-1)+0-1=-1.
故答案为:B.
【分析】根据题意得出m=1,n=-1,a+b=0,xy=1,代入原式进行计算,即可得出答案.
16.【答案】美羊羊
【知识点】有理数及其分类
【解析】【解答】解:由题意得:“喜羊羊”表示最小的正整数是1,
“美羊羊”表示绝对值最小的有理数是0,
“懒羊羊”表示最大的负整数为﹣1,
∵1+0+(﹣1)=0,
∴把三者加在一起也表示其中这只羊是:美羊羊,
故答案为:美羊羊.
【分析】首先确定:“喜羊羊”表示最小的正整数是1,“美羊羊”表示绝对值最小的有理数是0,“懒羊羊”表示最大的负整数为﹣1,再求和即可确定答案.
17.【答案】;3和9
【知识点】无理数的概念;有理数的概念;求算术平方根
【解析】【解答】解:(1)∵16的算术平方根是4,4是有理数,4不能输出,
∴4的算术平方根是2,2是有理数,2不能输出,
∴2的算术平方根是,是无理数,输出,
故答案为:;
(2)∵9的算术平方根是3,3的算术平方根是,
∴x值可以是3和9.
故答案为:3和9(答案不唯一).
【分析】(1)把x=16代入数值转换器,求其算术平方根,直至算术平方根为无理数即可;
(2)根据数值转换器及输出的y是,确定出x值即可(答案不唯一).
18.【答案】解:形如的数一共有9个不同的有理数.
【知识点】有理数及其分类
【解析】【分析】根据题意知,形如的数一共有,,,,,,,,共9个.
19.【答案】(1)不是;是
(2)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.
∵2016﹣a中a的值越大,则2016﹣a的值越小,
∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.
(3)该集合共有24个元素.
理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,
∴黄金集合中的元素一定是偶数个.
∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,
又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,
∴这个黄金集合中的元素个数为:12×2=24(个).
【知识点】正数和负数的认识及应用;有理数及其分类
【解析】【解答】解:(1)根据题意可得,2016﹣2016=0,而集合{2016}中没有元素0,故{2016}不是黄金集合;
∵2016﹣2017=﹣1,
∴集合{﹣1,2016}是黄金集合.
故答案为:不是,是.
【分析】(1)根据有理数a是集合的元素时,2016﹣a也必是这个集合的元素,这样的集合我们称为黄金集合,从而可以可解答本题;
(2)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;
(3)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.
1 / 1