5.2.3解方程(同步讲义)五年级数学上册人教版

文档属性

名称 5.2.3解方程(同步讲义)五年级数学上册人教版
格式 docx
文件大小 155.8KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-10-16 07:44:40

图片预览

文档简介

第五单元 简易方程
5.2.3解方程
(知识梳理+专项练习)
知识点一、整数方程求解
解方程的步骤
(1)去括号。
在去方程中的括号时,若括号前面是“+”,括号内不变符号;若括号前是“﹣”,去掉括号后,括号内变号。
(2)移项。
通过移项,将方程中的含未知数的项都移动到一侧,将整数移动到另一侧。
(3)合并同类项。
对含有相同未知数的次数相同的项的系数相加,合并同类项。
(4)系数化为1.
合并同类项后,将等式两侧都除以含有未知数的次数最高的项的系数。当方程为一元一次方程时,系数化为1后即可得到方程的解。
知识点二、小数方程求解
一般把小数转化为整数之后,其他步骤与整数方程求解相同。
解方程的步骤
(1)去分母。
当方程中存在分数,对方程中的两侧都乘以分数的分母,使分式化为整式,便于计算。
(2)去括号。
在去方程中的括号时,若括号前面是“+”,括号内不变符号;若括号前是“﹣”,去掉括号后,括号内变号。
(3)移项。
通过移项,将方程中的含未知数的项都移动到一侧,将整数移动到另一侧。
(4)合并同类项。
对含有相同未知数的次数相同的项的系数相加,合并同类项。
(5)系数化为1.
合并同类项后,将等式两侧都除以含有未知数的次数最高的项的系数。当方程为一元一次方程时,系数化为1后即可得到方程的解。
一、选择题
1.当时,a等于( )。
A.1或0 B.2或0 C.3或0 D.4或0
2.甲数是a,比乙数的6倍少b,表示乙数的式子是( )。
A. B. C. D.
3.下列说法正确的是( )。
A.今天是晴天,明天一定也是晴天 B.当x=0,x=0.2时,2x=x2
C.掷硬币时,可能是正面朝上 D.小数的计算一定要数位对齐
二、填空题
4.已知0.6x+8=20,那么5x-9=( )。
5.△+□=24,△=□+□+□,求△=( ).
6.使方程式2.5x=80左右两边相等的x的值是( )。
三、判断题
7.如果3x+4=25,那么4x+3=31。( )
8.6m-7=2既是等式也是方程,m=1.5是这个方程的解。( )
9.方程4÷x=0.2的解是20。( )
四、计算题
10.列竖式计算或解方程。
3.08×7.2= 75.6÷1.5= x-2.5=1.78 3(4x+5)=21
五、解答题
11.已知这个长方形的周长是36cm,它的面积是多少?
12.a△b=a+(a+1)+(a+2)+…+(a+b-1),其中a,b为自然数。若(y△3)△3=183,求y的值。
13.将一个长方形的长减少3厘米,宽增加2厘米,就得到一个与原来的这个长方形面积相等的正方形,原来长方形的面积是多少平方厘米?
14.甲、乙两个工程队铺一条长1600米的公路,他们从两端同时施工,甲队每天铺105米,乙队每天铺95米,几天后能够铺完这条公路?(列方程解答)
15.中国2019年国际专利申请量居全世界第一。其中,国内企业高度重视高新技术的研发。在单独的企业申请专利排行榜中,我国的华为以4411份申请排在了全球第一位,比美国的高通申请专利数量2倍多157份。美国的高通申请专利数量多少份?
(1)把如图的线段图补画完整。
(2)列式或方程解答。
/ 让教学更有效 精品试卷 | 数学学科
/ 让教学更有效 精品试卷 | 数学学科
试卷第1页,共3页
试卷第1页,共3页
参考答案:
题号 1 2 3
答案 B C C
1.B
【分析】分等于0和不等于0两种情况讨论即可。
【详解】当a=0时,a2=0,2a=0,a2=2a;
当a≠0时,将a2=2a的两边同时除以a,得a=2
综上可知:a等于0或2。
故答案为:B
【点睛】解题时不要丢掉a≠0这种情况。
2.C
【分析】根据题意列出等式如下:乙数×6-b=a
把乙数看成未知数,解方程即可。
【详解】列出等式,把乙数看做未知数,解方程
乙数×6-b=a
解:乙数×6=a+b
乙数= (a+b)÷6
故答案为:C。
【点睛】本题主要考查用字母表示数和解方程。
3.C
【分析】可能性事件是有可能发生也有可能不发生,是一件不确定性事件;当知道x的解时,直接代入方程验算即可;小数的加减法一定要数位对齐,计算小数乘法时,应把因数的末尾对齐,而不是把因数中的小数点对齐。
【详解】A.今天是晴天,明天不一定也是晴天。明天的天气是未知的。原说法错误,不符合题意。
B.当x=0时,2x=2×0=0,= =0,则2x=;当x=0.2时,2x=2×0.2=0.4,==0.4×0.4=0.16,则2x≠。原说法错误,不符合题意。
C.掷硬币时,可能是正面朝上,也可能背面朝上。原说法正确,符合题意。
D.在计算小数加减法时,必须把小数点对齐。计算小数乘法时,小数点不一定要对齐。原说法错误,不符合题意。
故答案为:C
4.91
【分析】先依据等式的性质,方程两边先同时减去8,再两边同时除以0.6,求出x的值,然后代入5x-9计算即可。
【详解】0.6x+8=20
解:0.6x+8-8=20-8
0.6x=12
0.6x÷0.6=12÷0.6
x=20
把x=20,代入5x-9得:
5×20-9
=100-9
=91
【点睛】此题考查的是运用等式的性质解方程以及含有字母的式子求值。
5.18
【详解】试题分析:因为△=□+□+□,所以△+□=□+□+□+□=4□=24,于是可得□=6,再求△即可.
解答:解:因为△=□+□+□
所以△+□=24
□+□+□+□=24
4□=24
□=6
△=24﹣6=18,
故答案为18.
点评:本题考查、了简单的等量代换问题,关键是得出4□=24.
6.32
【分析】使方程两边左右相等的未知数的值叫做方程的解,因此根据等式的性质,方程两边同除以2.5即可求出x的值。
【详解】2.5x=80
2.5 x÷2.5=80÷2.5
x=80÷2.5
x=32
所以使方程2.5x=80左右两边相等的x的值是32。
7.√
【分析】如果3x+4=25,根据等式的性质1和性质2,方程左右两边先同时减去4,再同时除以3,解出方程,求出x的值,再代入到方程4x+3=31中,根据方程的检验,看方程是否成立即可。
【详解】3x+4=25
解:3x=25-4
3x=21
x=21÷3
x=7
将x=7代入到方程4x+3=31中,
左边=4×7+3
=28+3
=31
右边=31
左边=右边,
所以x=7是4x+3=31的解。原题的说法是正确的。
故答案为:√
【点睛】此题的关键是通过等式的性质解出方程,同时利用方程检验的方法,即可得解。
8.√
【分析】根据等式的定义:含有等号的式子叫做等式,可知6m-7=2是等式;再根据方程的意义:含有未知数的等式叫做方程,即可判断。
【详解】6m-7=2,既含有未知数,又是等式,具备了方程的条件,因此是方程;
6m-7=2
6m=9
m=1.5
故答案为:√。
【点睛】此题主要考查方程的意义以及方程的解。
9.×
【分析】求出方程4÷x=0.2的解;根据等式的性质2,方程两边同时乘x,再除以0.2,求出方程4÷x的解,方程的解应该是x等于多少,据此即可判断。
【详解】4÷x=0.2
解:4÷x×x=0.2×x
0.2x=4
0.2x÷0.2=4÷0.2
x=20
方程4÷x=0.2的解是x=20。
原题干说法错误。
故答案为:×
10.22.176;50.4;x=4.28;x=0.5
【分析】3.08×7.2,小数乘法法则:(1)按整数乘法的法则先求出积;(2)看因数中一个有几位小数,就从积的右边起数出几位点上小数点。
75.6÷1.5,小数除法法则:先移动除数的小数点,使它变成整数。除数的小数点向右移动几位,被除数的小数点也向右移动相同的位数(位数不够的补“0”),然后按照除数是整数的除法进行计算。
x-2.5=1.78,根据等式的性质1,两边同时+2.5即可;
3(4x+5)=21,根据等式的性质1和2,两边先同时÷3,再同时-5,最后同时÷4即可。
【详解】3.08×7.2=22.176 75.6÷1.5=50.4
x-2.5=1.78
解:x-2.5+2.5=1.78+2.5
x=4.28
3(4x+5)=21
解:3(4x+5)÷3=21÷3
4x+5-5=7-5
4x÷4=2÷4
x=0.5
11.72平方厘米
【详解】试题分析:长方形的周长C=(a+b)×2,据此代入数据即可求出x的值,再据长方形的面积公式即可求解.
解:设长方形的宽为x厘米,则长为2x厘米,
(x+2x)×2=36,
x+2x=18,
3x=18,
x=6;
2×6=12(厘米),
12×6=72(平方厘米);
答:它的面积是72平方厘米.
点评:此题主要考查长方形的周长和面积的计算方法的灵活应用.
12.19
【分析】首先,根据题目给出的新运算法则,将(y△3)△3=183展开为(y△3)+(y△3+1)+(y△3+2)=183,可化简为3个(y△3)加上3;进而求出y△3的值,再根据新运算法则,将y△3的值进行展开,求解y的值。
【详解】(y△3)△3=183
解:(y△3)+(y△3+1)+(y△3+2)=183
3(y△3)+3=183
3(y△3)+3-3=183-3
3(y△3)=180
3(y△3)÷3=180÷3
y△3=60
y△3=60
解:y+(y+1)+(y+2)=60
3y+3=60
3y+3-3=60-3
3y=57
3y÷3=57÷3
y=19
y的值是19。
【点睛】本题考查的是定义新运算,对于定义新运算的题目,首先要准确理解题目的含义,然后再按照题目意思求解问题。
13.36平方厘米
【详解】试题分析:根据题意可知:长减少3厘米,宽增加2厘米,就成为一个正方形,说明长比宽多3+2=5厘米;再根据长方形和正方形的面积公式,设这个长方形的长是x厘米,则宽为x﹣5厘米;由此列方程求出长和宽,再计算原来的面积即可.
解:设这个长方形的长是x厘米,则宽为x﹣5厘米;
x(x﹣5)=(x﹣3)(x﹣3),
x2﹣5x=x2﹣6x+9,
x=9,
x﹣5=9﹣5=4;
9×4=36(平方厘米);
答:原来长方形的面积是36平方厘米.
点评:此题的解答首先根据题意分别求出原来长方形的长和宽,再根据长方形的面积公式解答.
14.8天
【分析】根据题意可知,甲每天铺的米数×天数+乙每天铺的米数×天数=总长,所以设x天后能够铺完这条公路,据此列出方程求解即可。
【详解】由分析可得:
解:设x天后能够铺完这条公路。
105x+95x=1600
200x=1600
200x÷200=1600÷200
x=8
答:8天后能够铺完这条公路。
【点睛】本题考查了每天铺路的速度、天数和总路长三者之间的关系以及应用,找出他们之间的等量关系,结合实际列出方程,在解方程的过程中要注意运算的正确性。
15.(1)见详解
(2)美国的高通申请专利数量2127份。
【分析】(1)由题意知:华为申请的专利是美国高通申请的专利2倍还多157份,以美国高通申请的专利数量为单位“1”,据此画出线段图。
(2)美国的高通申请专利数量乘2再加157份等于华为申请专利数量的4411份,据此列出方程。
【详解】(1)
(2)解:设美国的高通申请专利数量为,则:
答:美国的高通申请专利数量2127份。
【点睛】找出美国的高通申请专利数量×2+157=4411这个等量关系是解答本题的关键。
答案第1页,共2页
答案第1页,共2页