数学:5.2二次根式的性质教案(鲁教版八年级上)

文档属性

名称 数学:5.2二次根式的性质教案(鲁教版八年级上)
格式 rar
文件大小 33.9KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2009-10-22 15:15:00

图片预览

文档简介

www. 中考资源网
5.2二次根式的性质
一.教学目标
1.了解最简二次根式的意义,并能作出准确判断.
2.能熟练地把二次根式化为最简二次根式.
3.了解把二次根式化为最简二次根式在实际问题中的应用.
4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.
5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.
6.通过本节的学习,渗透转化的数学思想.
二.重点难点
1.教学重点 会把二次根式化简为最简二次根式
2.教学难点 准确运用化二次根式为最简二次根式的方法
三.教学方法
程序式教学
四.课时安排
2课时
五.教学过程
  1.复习引入
  教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料.
  【预备资料】
  ⑴.二次根式的性质
  
  ⑵.二次根式性质例题
  ⑶.二次根式性质练习题
  【引入材料】
  看下面的问题:
  已知: =1.732,如何求出 的近似值
  解法1:
  解法2:
  比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.
  2.概念讲解与巩固
学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
  【概念讲解材料】
  满足下列条件的二次根式,叫做最简二次根式:
  (1) 被开方数的因数是整数,因式是整式;
  (2) 被开方数中不含能开得尽方的因数或因式.
  如: 都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.
  又如 也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如 .
  判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.
  【概念理解学习材料1】
  例1 下列二次根式中哪些是最简二次根式?哪些不是?为什么?
  
  分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.
  解:最简二次根式有 ,因为
  被开方数中含能开得尽方的因数9,所以它不是最简二次根式.
  说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
  【概念理解巩固材料1】
  正选练习题1
  判断下列各式是否是最简二次根式?
  
  备选选练习题1
  判断下列各式是否是最简二次根式?
  
  【概念理解学习材料2】
  例2判断下列各式是否是最简二次根式?
  
  分析:(1) 显然满足最简二次根式的两个条件.
  (2) 或
  解:最简二次根式只有 ,因为
   或
  说明:最简二次根式应该分母里没根式,根式里没分母(或小数).
  【概念理解巩固材料2】
  正选练习题2
  判断下列各式是否是最简二次根式?
  
  备选选练习题2
  判断下列各式是否是最简二次根式?
  
  【概念理解学习材料3】
  例3判断下列各式是否是最简二次根式?
  
  分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现 和 是最简二次根式,而 不是最简二次根式,因为
  
  在根据定义知 也不是最简二次根式,因为
  
  解:最简二次根式有 和 ,因为
   ,
   .
  【概念理解巩固材料3】
  正选练习题3
  判断下列各式是否是最简二次根式?
  
  备选选练习题3
  判断下列各式是否是最简二次根式?
  题目可根据学生实际情况选择2-3道.
  【概念理解学习材料4】
  例4判断下列各式是否是最简二次根式?
  
  分析:被开方数是多项式的要先分解因式再进行观察判断.
  (1) 不能分解因式, 显然满足最简二次根式的两个条件.
  (2)
  解:最简二次根式只有 ,因为
   .
  说明:被开方数比较复杂时,应先进行因式分解再观察.
  【概念理解巩固材料4】
  正选练习题4
  判断下列各式是否是最简二次根式?
  
  备选选练习题4
  判断下列各式是否是最简二次根式?
  题目可根据学生实际情况选择2-3道.
  3.化简二次根式为最简二次根式方法学习与巩固
  学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
  【化简方法学习材料1】
  例1把下列二次根式化为最简二次根式
  
  分析:本例题中的2道题都是基础题,只要将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面即可.
  解:
  
  【化简方法巩固材料1】
  正选练习题1
  化简
  
  备选练习题1
  化简
  题目可由教师根据学生情况准备.
  【化简方法学习材料2】
  例2 把下列二次根式化为最简二次根式
  
  分析:本例题中的2道题被开方数都是多项式,应先进行因式分解.
  解:
  
  
  说明:被开方数中能开的尽方的因数或因式的算术平方根移到根号外面后要注意符号问题.
  在化简二次根式时,要防止出现如下的错误:
  
  等等.
  化简二次根式的步骤是:
  (1) 把被开方数(或式)化成积的形式,即分解因式.
  (2) 化去根号内的分母,即分母有理化.
  (3) 将根号内能开得尽方的因数(式)开出来.
  【化简方法巩固材料2】
  正选练习题2
  化简
  
  备选练习题2
  化简
  题目可由教师根据学生情况准备.
  【化简方法学习材料3】
  例3把下列二次根式化为最简二次根式
  
  分析:被开方式比较复杂时,要先对被开方式进行处理。
  解:
  
  
  说明:运算中要注意运算的准确性和合理性.
  【化简方法巩固材料3】
  正选练习题3
  化简
  
  备选练习题3
  化简
  题目可由教师根据学生情况准备.
  4.小结
  ⑴最简二次根式概念
  ⑵二次根式的化简
化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.
PAGE
- 1 -
中考资源网期待您的投稿!zkzyw@