课件12张PPT。6.2.2解一元一次方程(1)义务教育教科书(华师)七年级数学下册第6章 解一元一次方程☆ 一元一次方程定义: 只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.注意以下三点:(1)一元一次方程有如下特点:①只含有一个未知数; ②未知数的次数是1;③含有未知数的式子是整式。(2)一元一次方程的最简形式为:ax=b(a≠0)。(3)一元一次方程的标准形式为:ax+b= 0
(其中x是未知数,a、b是已知数,并且(a≠0)。自主预习[典例]1、下列各式是一元一次方程的是( )B(A) (B)
(C) (D)2、已知 是一元一次方程,
则m = 。0自主探究(去括号)(移项)(系数化为1)如何变形得到?利用
去括
号解
一元
一次
方程新知探究课本P10练习跟踪练习*一元一次方程的定义:
一元一次方程的特征:
知识梳理*解一元一次方程(去括号)
(1)移项要变号;
(2)去括号时,括号前是“-”,去括号后要将括号内的各项改变符号;
随堂练习例:提升:课件15张PPT。6.2.2解一元一次方程(2)义务教育教科书(华师)七年级数学下册第6章 解一元一次方程解下列方程
2(2x+1)=1-5(x-2)
*说一说解一元一次方程的一般步骤:
去括号
移项
合并同类项
系数化为1知识回顾自主预习归 纳去分母的方法: 方程的两边都乘以“公分母”,使方程中的系数不出现分数,这样的变形通常称为“去分母”。 注意事项:“去分母”是解一元一次方程的重要一步,此步的依据是方程的变形法则2,即方程的两边都乘以或除以同一个不为0的数,方程的解不变。(1)这里一定要注意“方程两边”的含义,它是指方程左右(即等号)两边的各项,包括含分母的项和不含分母的项;(2)“去分母”时方程两边所乘以的数一般要取各分母的最小公倍数;(3)去分母后要注意添加括号,尤其分子为多项式的情况。自主探究去分母例题探究1例题探究2小试牛刀基本思路:通过方程变形,把含有未知数的项移到方程的一边,把常数项移到方程的另一边,将方程化为最简形式ax=b(a≠0),然后方程两边同除以未知数的系数,即得方程的解为x=b/a。一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1。解一元一次方程的基本思路和一般步骤知识梳理这样解,对吗?随堂练习拓展练习课件15张PPT。6.2.2解一元一次方程(3)义务教育教科书(华师)七年级数学下册第6章 解一元一次方程(1)某数的5倍加上3等于某数的7倍减去5;(3)某数的一半加上4,比某数的3倍小21;根据下列条件列出方程,然后求出某数(2)某数的3倍减去9等于某数的1/3加上6;请同学们自己试着解一下。自主预习思考:如何列一元一次方程解答实际问题列一元一次方程解答实际问题列方程解答实际问题,关键是抓住问题中有关数量的相等关系,求得方程的解后,经过检验,就可得到实际问题的解答。列方程解应用题的步骤如下:(1)审题。弄清题意,找出已知量、未知量。(2)设未知数。对所求的未知量用设未知数表示。(3)列方程。根据题中的等量关系列出方程。(4)解方程。解所列的方程。(5)检验解。检验解出的未知数值是否符合题意。(6)答题。回答题中的问题。简记为:“审”、“设”、“列”、“解”、“验”、“答”注意:(1)设未知数时,要说清楚所设未知数表示的是什么,同时还要写清楚计算单位;(2)答题时要回答清楚题中所问的问题,同时写清楚计算单位。 例:如图,天平的两个盘内分别盛有51g、45g 盐,问应该从盘A内拿出多少盐到盘B内,才能使两者所盛盐的质量相等?分析应从盘A内拿出盐x g ,列表如下盘A盘BABAB新知探究解:==引例学校团委组织65名团员为学校建花坛搬砖.初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块.问初一同学有多少人参加了搬砖?分析设:初一同学有 人参加了搬砖,列表如下初一学生其他年级学生总数参加人数每人搬砖数共搬砖数6540068解:例2学校团委组织65名新团员为学校建花坛搬砖.女同学每人每次搬6块,男同学每人每次搬8块,每人各搬了4次,共搬了1800块.问这些新团员中有多少名男同学?分析设:新团员中有 名男同学,列表如下男同学女同学总数参加人数每人共搬砖数共搬砖数6518008×46×4解:用方程解实际问题的过程:问题方程解答分析抽象求解检验分析和抽象的过程包括:(1)弄清题意,设未知数;(2)找相等关系;(3)列方程.知识梳理1.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺阶段花了多少时间?4006865解:设小刚在冲刺阶段花了 秒时间,根据题意,则﹢=400随堂练习解:小刚在冲刺阶段花了 秒时间,根据题意,则﹢=400答:小刚在冲刺阶段花了 5 秒时间.1.足球的表面是由一些呈多边形的黑、白皮块缝而成的,共计有32块,已知黑色皮块比白色皮块数的一半多2,问两种皮块各有多少?解1:设黑色皮块有 块,则白色皮块有 块 , 根据题意,则(黑色)(白色)解这个方程,得答:黑色皮块有 12 块,则白色皮块有20 块.随堂练习2.小莉和同学在“五一”假期去森林公园玩,在溪流边的码头租了一艘小艇,逆流而上,划行速度约4千米/时.到B地后沿原路返回,速度增加了50﹪,回到A码头比去时少花了20分种.求A、B两地之间的路程.44(1+ 50﹪)即6解:设A、B两地之间的路程为 千米,据题意得-3千米(x- 3)千米8元收费1.2(x-3)元3.某市的出租车计价规则如下:行程不超过3千米,收起步价8元;超过部分每千米路程收费1.20元.某天李老师和三位学生去探望一位病假的学生,坐出租车付了17.60元,他们共乘坐了多少路程?解:设共乘坐了 千米的 路程,据题意得课本第12页