中小学教育资源及组卷应用平台
25.2用列举法求概率
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.学校联欢会设计了一个“配紫色”游戏:如图是两个可以自由转动的转盘,A盘被分成面积相等的3个扇形,B盘中蓝色扇形区域所占的圆心角是.同学们同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色,赢得游戏.若小赵同学同时转动A盘和B盘,她赢得游戏的概率是( )
A. B. C. D.
2.已知的三边a,b,c()均为整数且周长为24,其中最长边a满,若从这样的三角形中任取一个,则它是直角三角形的概率是( )
A. B. C. D.
3.小高有三件运动上衣,分别为蓝色、白色和红色,有两条运动裤,分别是黑色和红色,一天他准备去运动场锻炼,随手拿出一件运动上衣和一条运动裤,则恰好都是红色的概率为( )
A. B. C. D.
4.同时抛两枚质地均匀的硬币,有且只有一枚硬币正面朝上的概率是( )
A. B. C. D.
5.在一个不透明的盒子里装有6个分别写有数字-3,-2,-1,0,1,2,的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,记下数字a后不放回,再取出一个记下数字b,那么点(a,b)在抛物线y=-x2+1上的概率是( )
A. B. C. D.
6.网上购物已经成为人们常用的一种购物方式,售后评价也成为卖家和买家都关注的信息.消费者在网店购物后,将从“好评”、“中评”、“差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的.若甲,乙两名消费者在某网店购买了同一商品,且都给出了评价,那么两人中至少有一个给“好评”的概率为( )
A. B. C. D.
7.三张质地、大小、背面完全相同的卡片上,正面分别画有圆、平行四边形和等边三角形三个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出两张,则抽出的卡片正面图案都是中心对称图形的概率为( )
A. B. C. D.
8.有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是( )
A. B. C. D.
9.小刘和小李参加吉安市创建文明城市志愿服务活动,随机在“维护社区环境卫生”和“维护交通秩序”中选择一个志愿服务项目,那么两人都选择“维护社区环境卫生”的概率是( )
A. B. C. D.
10.毕业典礼上,甲、乙、丙三人合影留念,3人随机站成一排,那么甲和丙位置不相邻的概率( )
A. B. C. D.
11.童威把三张形状大小相同但画面不同的风景图片都按相同的方式剪成相同的三段,然后将三段上、三段中、三段下分别混合洗匀为“上、中、下”三堆图片,从这三堆图片中各随机抽取一张,则恰好能组成一张完整风景图片的概率是( )
A. B. C. D.
12.今年央视春晚上,刘谦十分钟的魔术节目《守岁共此时》:每位观众手中都有四张牌,从中间撕开……让观众们大开眼界.现有2张扑克牌,从中间撕开(如图),将其背面朝上,打乱顺序后放在桌面上,若从中随机抽取两张,则能拼成同一张牌的概率是( )
A. B. C. D.
二、填空题
13.有4条长度分别为1,3,5,7的线段,现从中任取三条能构成三角形的概率是 .
14.现有五张正面分别标有数字-1,0,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,再随机从剩下的抽取一张记下数字,前后两次抽取的数字分别记为、.则二次函数的顶点在轴上的概率为 .
15.先后两次各掷一枚硬币,其结果一枚硬币正面朝上,一枚硬币反面朝上的概率为 .
16.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球不放回,再从口袋中随机摸出一个小球,两次取出的小球标号的和不大于4的概率是 .
17.四个完全相同的球上分别标有数字,,,,从这四个球中任意取出一个球记为a,放回后,再取出一个记为b,则点能被5整除的概率为 .
三、解答题
18.某医药公司计划招聘一名科研人员,组织了一场“云招聘”,甲、乙两名应聘者的成绩如下表所示(单位:分).
应聘者 专业知识 创新能力 语言表达
甲 96 92 85
乙 93 88 95
(1)根据实际需要,该公司计划将专业知识、创新能力、语言表达三项按3:5:2的比例计算最后成绩,请计算甲、乙两人的最后成绩.
(2)为了更全面地了解甲、乙两名应聘者的综合素质,公司决定安排一场加试.加试设置三项综合性任务(依次记为A、B、C),要求甲、乙二人分别从这三项任务中随机选择一项完成并提交报告.求甲、乙二人所选任务不相同的概率.
19.901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
(1)该班的学生共有 名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.
20.为弘扬中华传统文化,某校举办了学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为“单人组”和“双人组”.小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
21.在第31届世界大学生运动会期间,成都大运会组委会向全市的各个家庭随机发送盲盒福袋,每个福袋中都有大运会挎包、大运会英语表、大运会赛程表、一封信,而冰袖、扇子、毛巾、跳绳四样礼品则随机装入每个福袋中,每个福袋中的礼品不重复.涛涛听到这个消息后非常的高兴,他非常渴望得到冰袖和扇子.
(1)若在每个福袋中冰袖、扇子、毛巾、跳绳任装一样,涛涛收到冰袖的概率是______;
(2)若在每个福袋中冰袖、扇子、毛巾、跳绳任装两样,请用列表法或画树状图的方法,求涛涛同时收到冰袖和扇子的概率.
22.2024年巴黎奥运会新增了四个项目:霹雳舞,滑板,冲浪,运动攀岩,依次记为A,B,C,D,滨河体育队的小明同学把这四个项目写在了背面完全相同的卡片上. 将这四张卡片背面朝上,洗匀放好.
(1)小明想从中随机抽取一张,去了解该项目在奥运会中的得分标准,恰好抽到是B(滑板)的概率是___.
(2)体育老师想从中选出来两个项目,让小明做成手抄报给大家普及一下,他先从中随机抽取一张不放回,再从中随机抽取一张,请用列表或画树状图的方法,求体育老师抽到的两张卡片恰好是B(滑板)和D(运动攀岩)的概率.
23.聚焦“双减”政策落地,某学校推出了如下五类特色数学作业:A:测量;B:七巧板;C:调查活动;D:无字证明;E:数学园地设计.拟了解学生最喜爱的特色数学作业,现随机抽取若干名学生进行调查,并将调查结果绘制成如图两幅不完整的统计图.根据以上信息,解答下列问题:
(1)补全统计图1(要求在条形图上方注明人数);
(2)图2中扇形E的圆心角度数为 度;
(3)甲、乙两同学决定从A,B,C,D四类特色数学作业中各选一类,求甲、乙两同学选中同一类特色数学作业的概率.
24.勾股定理是人类早期发现并证明的重要数学定理之一,至今已有几百种证明方法,在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释并创制了一幅“勾股圆方图”;后刘徽用“出入相补”原理证明了勾股定理;清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法.
(1)某学校数学活动室进行文化建设,拟从以上4位科学家的画像中随机选用1幅,恰好选中的画像是刘徽的概率________;
(2)在某次数学活动中,有一个不透明的信封内装有三根长度分别为4cm,6cm和8cm的细木棒,木棒露出纸袋外的部分长度相等,小亮手中有一根长度为cm的细木棒,现从信封内随机取出两根细木棒与小亮手中的细木棒首尾相接放在一起,求抽出的细木棒能与小亮手中的细木棒构成直角三角形的概率(用画树状图或列表的方法求解)
参考答案:
题号 1 2 3 4 5 6 7 8 9 10
答案 B A A C B A B B C B
题号 11 12
答案 B C
1.B
2.A
3.A
4.C
5.B
6.A
7.B
8.B
9.C
10.B
11.B
12.C
13..
14..
15.
16.
17.
18.(1)甲的最后成绩为91.8分,乙的最后成绩为90.9分
(2)
19.(1)60;(2)36°;(3).
20.
21.(1)
(2)
22.(1)
(2)
23.(1)略.
(2)54.
(3)略.
24.(1);
(2);
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)