人教版八年级下册数学(新)第十六章 二次根式第一节二次根式教学案(3份)

文档属性

名称 人教版八年级下册数学(新)第十六章 二次根式第一节二次根式教学案(3份)
格式 zip
文件大小 142.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2016-03-02 16:16:18

文档简介

二次根式(3)
八年级 班 姓名:
学习目标:
理解=a(a≥0)并利用它进行计算和化简. 通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题.
学习过程:
一、复习引入
老师口述并板收上两节课的重要内容;
1.形如(a≥0)的式子叫做二次根式;
2.(a≥0)是一个非负数;
3.()2=a(a≥0).
那么,我们猜想当a≥0时,=a是否也成立呢?下面我们就来探究这个问题.
二、探究新知
(学生活动)填空:
=_______;=_______;=______;
=________;=________;=_______.
(老师点评):根据算术平方根的意义,我们可以得到:
=2;=0.01;=;=;=0;=.
因此,一般地:=a(a≥0)
例1 化简
(1) (2) (3) (4)
分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,
(4)(-3)2=32,所以都可运用=a(a≥0)去化简.
解:(1)==3 (2)==4
(3)==5 (4)==3
三、巩固练习
教材P7练习2.
四、应用拓展
例2 填空:当a≥0时,=_____;当a<0时,=_______,并根据这一性质回答下列问题.
(1)若=a,则a可以是什么数?
(2)若=-a,则a可以是什么数?
(3)>a,则a可以是什么数?
分析:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,=,那么-a≥0.
(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知=│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.
解:(1)因为=a,所以a≥0;
(2)因为=-a,所以a≤0;
(3)因为当a≥0时=a,要使>a,即使a>a所以a不存在;当a<0时,=-a,要使>a,即使-a>a,a<0综上,a<0
例3当x>2,化简-.
分析:(略)
五、归纳小结
本节课应掌握:=a(a≥0)及其运用,同时理解当a<0时,=-a的应用拓展.
六、布置作业
1.教材P5习题16.1 3、4、6、8.二次根式(2)
八年级____班 姓名:
学习目标:
理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.
学习过程:
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?当a<0时,有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______.
老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1 计算
1.()2 2.(3)2 3.()2 4.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题.
解:()2 =,(3)2 =32·()2=32·5=45,
()2=,()2=.
三、巩固练习
计算下列各式的值:
()2 ()2 ()2 ()2 (4)2
四、应用拓展
例2 计算
1.()2(x≥0)
2.()2
3.()2
4.()2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+1>0
()2=x+1
(2)∵a2≥0,∴()2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴=a2+2a+1
(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3 (2)x4-4 (3) 2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1.(a≥0)是一个非负数;
2.()2=a(a≥0);反之:a=()2(a≥0).
六、布置作业
1.教材P5 复习巩固2.(1)、(2) 7.二次根式(1)
八年级 班 姓名:
学习目标:
理解二次根式的概念,并利用(a≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.
学习过程:
一、复习引入
问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
自评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).
问题2:由勾股定理得AB=
问题3:由方差的概念得S= .
二、探索新知
很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.
(学生活动)议一议:
1.-1有算术平方根吗?
2.0的算术平方根是多少?
3.当a<0,有意义吗?
老师点评:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.当x是多少时,在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P3练习1、2.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.选用课时作业设计.