初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(六)图形操作问题

文档属性

名称 初中数学2016年中考八大题型典中典:初中数学2016年中考八大题型典中典专题复习(六)图形操作问题
格式 zip
文件大小 340.3KB
资源类型 教案
版本资源 通用版
科目 数学
更新时间 2016-03-08 22:05:37

图片预览

文档简介

专题复习(六)——图形操作问题
题型概述
操作题是当今中考命题的热点,在今后仍是大 ( http: / / www.21cnjy.com )趋势,是数形结合的拓展和深化,它有助于学生发展空间观念和创新能力的培养,对于这类问题的解答,首先要求大家积极的参与操作、实验、观察、猜想、探索、发现结论全过程,有效提高解答操作试题的能力。
题型例析
类型1:网格与画图
结合图形找准关键性格点,需要对网格有深刻理解,同时结合相关几何知识画出图形。
【例题】(2015 浙江丽水,第19题6分)如图,已知△ABC,∠C=Rt∠,AC(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);
(2)连结AD,若∠B=37°,求∠CAD的度数.
( http: / / www.21cnjy.com )
【答案】解:(1)作图如下:
( http: / / www.21cnjy.com )
(2)∵△ABC中,∠C=Rt∠,∠B=37°,∴∠BAC=53°.
∵AD=BD,∴,∠B=∠BAD=37°
∴∠CAD=∠BAC∠BAD=16°.
【考点】尺规作图;线段垂直平分线的性质;直角三角形两锐角的关系;等腰三角形的性质.
【分析】(1)因为到A,B两点的距离相等在线段AB的垂直平分线上,因此,点D是线段AB的垂直平分线与BC的交点,据此作图即可.
(2)根据直角三角形两锐角互余,求出∠BAC,根据等腰三角形等边对等角的性质,求出∠BAD,从而作差求得∠CAD的度数.
【变式练习】
(2015·山东潍坊第9 题3分)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若BD=6,AF=4,CD=3,则BE的长是(  )
( http: / / www.21cnjy.com )
A.2 B.4 C.6 D.8
考点:平行线分线段成比例;菱形的判定与性质;作图—基本作图..
分析:根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.
解答:∵根据作法可知:MN是线段AD的垂直平分线,
∴AE=DE,AF=DF,
∴∠EAD=∠EDA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠EDA=∠CAD,
∴DE∥AC,
同理DF∥AE,
∴四边形AEDF是菱形,
∴AE=DE=DF=AF,
∵AF=4,
∴AE=DE=DF=AF=4,
∵DE∥AC,
∴=,
∵BD=6,AE=4,CD=3,
∴=,
∴BE=8,
故选D.
点评:本题考查了平行线分线段成比例定理,菱 ( http: / / www.21cnjy.com )形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.
类型2:折叠与翻转问题
折叠问题是一种常见题型,折叠前后的两个图形对应边、对应角相等,也就是说折叠变换就是全等变换,把握住这些常识性的知识点再来解题就很容易了。
【例题】(2015 江苏泰州,第16题3分)如图, 矩形中,AB=8,BC=6,P为AD上一点, 将△ABP 沿BP翻折至△EBP, PE与CD相交于点O,且OE=OD,则AP的长为__________.
( http: / / www.21cnjy.com )
【答案】4.8.
【解析】
试题分析:由折叠的性质得出EP=AP, ∠ ( http: / / www.21cnjy.com )E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6-x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.
试题解析:如图所示:
( http: / / www.21cnjy.com )
∵四边形ABCD是矩形
∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8
根据题意得:△ABP≌△EBP,
∴EP=AP,∠E=∠A=90°,BE=AB=8,
在△ODP和△OEG中
( http: / / www.21cnjy.com )
∴△ODP≌△OEG
∴OP=OG,PD=GE,
∴DG=EP
设AP=EP=x,则PD=GE=6-x,DG=x,
∴CG=8-x,BG=8-(6-x)=2+x
根据勾股定理得:BC2+CG2=BG2
即:62+(8-x)2=(x+2)2
解得:x=4.8
∴AP=4.8.
考点:1.翻折变换(折叠问题);2.勾股定理;3.矩形的性质.
【变式练习】
(2015 四川省内江市, ( http: / / www.21cnjy.com )第14题,5分)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为  .
( http: / / www.21cnjy.com )
考点:翻折变换(折叠问题)
分析:先根据折叠的性质得DE=EF,CE=EF,AF=AD=2,BF=CB=3,则DC=2EF,AB=5,再作AH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ADCH为矩形,所以AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,然后在Rt△ABH中,利用勾股定理计算出AH=2,所以EF=.
解答:∵分别以AE,BE为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处,
∴DE=EF,CE=EF,AF=AD=2,BF=CB=3,
∴DC=2EF,AB=5,
作AH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ADCH为矩形,
∴AH=DC=2EF,HB=BC﹣CH=BC﹣AD=1,
在Rt△ABH中,AH==2,
∴EF=.
故答案为:.
( http: / / www.21cnjy.com )
点评:本题考查了折叠的性质:折叠是一种 ( http: / / www.21cnjy.com )对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.
类型3:分割与拼接
解决此类问题时要关注分割和拼接过程中所产生的结果,再灵活运用相关的几何知识解决问题。
【例题】(2015 江苏镇江,第23题,6分)图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.
( http: / / www.21cnjy.com )
(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);
(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于  .
考点: 正多边形和圆;圆锥的计算;作图—复杂作图.
分析: (1)作AE的垂直平分线交 ( http: / / www.21cnjy.com )⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长 FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;
(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.
解答: (1)如图所示,八边形ABCDEFGH即为所求,
(2)∵八边形ABCDEFGH是正八边形,
∴∠AOD=3=135°,
∵OA=5,
∴的长=,
设这个圆锥底面圆的半径为R,
∴2πR=,
∴R=,即这个圆锥底面圆的半径为.
故答案为:.
( http: / / www.21cnjy.com )
点评: 本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.
 
【变式练习】
(2015 浙江杭州,第16题4分 ( http: / / www.21cnjy.com ))如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°,将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为2的平行四边形,则CD=_______________________________
【答案】或.
【考点】剪纸问题;多边形内角和定理;轴对称的 ( http: / / www.21cnjy.com )性质;菱形、矩形的判定和性质;含30度角直角三角形的性质;相似三角形的判定和性质;分类思想和方程思想的应用.
【分析】∵四边形纸片ABCD中,∠A=∠C=90°,∠B=150°,∴∠C=30°.
如答图,根据题意对折、裁剪、铺平后可有两种情况得到平行四边形:
如答图1,剪痕BM、BN,过点N作NH⊥BM于点H,
易证四边形BMDN是菱形,且∠MBN=∠C=30°.
设BN=DN=,则NH=.
根据题意,得,∴BN=DN=2, NH=1.
易证四边形BHNC是矩形,∴BC=NH=1. ∴在中,CN=.
∴CD=.
如答图2,剪痕AE、CE,过点B作BH⊥CE于点H,
易证四边形BAEC是菱形,且∠BCH =30°.
设BC=CE =,则BH=.
根据题意,得,∴BC=CE =2, BH=1.
在中,CH=,∴EH=.
易证,∴,即.
∴.
综上所述,CD=或.
类型4:“学具”操作型
这属于实际学习用具操作问题,解题的重要方式是实际操作,即在解题的时候用三角板或其它学具进行了实际操作。这种试题考查了学生的实际动手能力。
【例题】(2015 宜昌, ( http: / / www.21cnjy.com )第11题3分)如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是(  )
( http: / / www.21cnjy.com )
A.圆形铁片的半径是4cm B.四边形AOBC为正方形
C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2
考点:切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算
专题:应用题
分析:由BC,AC分别是 ( http: / / www.21cnjy.com )⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.
解答:由题意得:BC,AC分别是⊙O的切线,B,A为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形AOBC是正方形,
∴OA=AC=4,故A,B正确;
∴的长度为:=2π,故C错误;
S扇形OAB==4π,故D正确.
故选C.
点评:本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.
【变式练习】
(2015 浙江省绍兴市,第13题,5 ( http: / / www.21cnjy.com )分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 cm
( http: / / www.21cnjy.com )
考点:等边三角形的判定与性质..
专题:应用题.
分析:根据有一个角是60°的等腰三角形的等边三角形进行解答即可.
解答:解:∵OA=OB,∠AOB=60°,
∴△AOB是等边三角形,
∴AB=OA=OB=18cm,
故答案为:18
点评:此题考查等边三角形问题,关键是根据有一个角是60°的等腰三角形的等边三角形进行分析.
跟踪检测:
1. (2015 怀化,第19题8分)如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2
(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)所作的圆中,求出劣弧的长l.
( http: / / www.21cnjy.com )
2. (2015 昆明第17题,6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).
( http: / / www.21cnjy.com )
3. (2015·湖北省随州市,第22题8分)如图,射线PA切⊙O于点A,连接PO.
(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;
(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.
4. (2015 广东东莞21,7分) ( http: / / www.21cnjy.com )如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
( http: / / www.21cnjy.com )
5. (2015·湖北省咸宁市,第 ( http: / / www.21cnjy.com )23题10分)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.
6. (2015福建龙岩22,12分)下 ( http: / / www.21cnjy.com )列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.
( http: / / www.21cnjy.com )
(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;
(2)如图甲,把六边形ABCDEF沿 ( http: / / www.21cnjy.com )EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;
(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
跟踪检测参考答案
1. (2015 怀化,第19题8分)如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2
(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)所作的圆中,求出劣弧的长l.
( http: / / www.21cnjy.com )
考点: 作图—复杂作图;弧长的计算.
分析: (1)使以O为圆心的圆经过A、B、C三点,即做三角形的外接圆,即是三条边的垂直平分线的交点;
(2)由,∠ACB=90°,AC=1,AB=2,易得∠B=30°,∠A=60°,∠BOC=120°,由弧长计算公式得出结论.
解答: 解:(1)如图所示:
(2)∵AC=1,AB=2,
∴∠B=30°,∠A=60°,
∴∠BOC=120°,
∴l==
( http: / / www.21cnjy.com )
点评: 本题主要考查了三角形外接圆的做法,含30°直角三角形的性质及弧长的计算,数形结合,掌握直角三角形的性质是解答此题的关键.
2. (2015 昆明第17题,6分)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).
( http: / / www.21cnjy.com )
考点: 作图-旋转变换;弧长的计算;作图-轴对称变换.
分析: (1)利用关于x轴对称点的横坐标相等,纵坐标化为相反数可先找出点A1、B1、C1的坐标,然后画出图形即可;
(2)利用旋转的性质可确定出点A2、C2的坐标;
(3)利用弧长公式进行计算即可.
解答: 解:(1)根据关于x轴对称点的坐标特点可知:A1(2,﹣4),B1(1,﹣1),C1(4,﹣3),
如图下图:连接A1、B1、C1即可得到△A1B1C1.
( http: / / www.21cnjy.com )
(2)如图:
( http: / / www.21cnjy.com )
(3)由两点间的距离公式可知:BC=,
∴点C旋转到C2点的路径长=.
点评: 本题主要考查的是图形的对称、图形的旋转以及扇形的弧长公式,掌握相关性质是解题的关键.
3. (2015·湖北省随州市,第22题8分)如图,射线PA切⊙O于点A,连接PO.
(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;
(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.
考点:切线的判定与性质;弧长的计算;作图—基本作图.
分析:(1)按照作一个角等于已知角的作图方法作图即可,连接OA,作OB⊥PC,根据角平分线的性质证明OA=OB即可证明PC是⊙O的切线;
(2)首先证明△PAB是等边三角形,则∠APB=60°,进而∠POA=60°,在Rt△AOP中求出OA,用弧长公式计算即可.
解答:(1)作图如右图,
连接OA,过O作OB⊥PC,
∵PA切⊙O于点A,
∴OA⊥PA,
又∵∠OPC=∠OPA,OB⊥PC,
∴OA=OB,即d=r,
∴PC是⊙O的切线;
(2)∵PA、PC是⊙O的切线,
∴PA=PB,
又∵AB=AP=4,
∴△PAB是等边三角形,
∴∠APB=60°,
∴∠AOB=120°,∠POA=60°,
在Rt△AOP中,tan60°=
∴OA=
∴==.
( http: / / www.21cnjy.com )
点评:本题考查了尺规作图、切线的判定与性质、等边三角形的判定与性质、锐角三角函数以及弧长的计算,求出圆心角和半径长是解决问题的关键.
4. (2015 广东东莞21,7分) ( http: / / www.21cnjy.com )如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.
(1)求证:△ABG≌△AFG;
(2)求BG的长.
( http: / / www.21cnjy.com )
考点: 翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.
分析: (1)利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;
(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;
解答: 解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,
∵将△ADE沿AE对折至△AFE,
∴AD=AF,DE=EF,∠D=∠AFE=90°,
∴AB=AF,∠B=∠AFG=90°,
又∵AG=AG,
在Rt△ABG和Rt△AFG中,

∴△ABG≌△AFG(HL);
(2)∵∴△ABG≌△AFG,
∴BG=FG,
设BG=FG=x,则GC=6﹣x,
∵E为CD的中点,
∴CE=EF=DE=3,
∴EG=3+x,
∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,
∴BG=2.
( http: / / www.21cnjy.com )
点评: 此题主要考查了勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.
5. (2015·湖北省咸宁市 ( http: / / www.21cnjy.com ),第23题10分)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.
考点:四边形综合题.
分析:(1)根据对等四边形的定义,进行画图即可;
(2)连接AC,BD,证明Rt△ADB≌Rt△ACB,得到AD=BC,又AB是⊙O的直径,所以AB≠CD,即可解答;
(3)根据对等四边形的定义,分两种情况 ( http: / / www.21cnjy.com ):①若CD=AB,此时点D在D1的位置,CD1=AB=13;②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11;利用勾股定理和矩形的性质,求出相关相关线段的长度,即可解答.
解答:(1)如图1所示(画2个即可).
( http: / / www.21cnjy.com )
(2)如图2,连接AC,BD,
( http: / / www.21cnjy.com )
∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
在Rt△ADB和Rt△ACB中,
∴Rt△ADB≌Rt△ACB,
∴AD=BC,
又∵AB是⊙O的直径,
∴AB≠CD,
∴四边形ABCD是对等四边形.
(3)如图3,点D的位置如图所示:
( http: / / www.21cnjy.com )
①若CD=AB,此时点D在D1的位置,CD1=AB=13;
②若AD=BC=11,此时点D在D2、D3的位置,AD2=AD3=BC=11,
过点A分别作AE⊥BC,AF⊥PC,垂足为E,F,
设BE=x,
∵tan∠PBC=,
∴AE=,
在Rt△ABE中,AE2+BE2=AB2,
即,
解得:x1=5,x2﹣5(舍去),
∴BE=5,AE=12,
∴CE=BC﹣BE=6,
由四边形AECF为矩形,可得AF=CE=6,CF=AE=12,
在Rt△AFD2中,,
∴,,
综上所述,CD的长度为13、12﹣或12+.
点评:本题主要考查了四边形的综合题,解题的关键是理解并能运用“等对角四边形”这个概念.在(3)中注意分类讨论思想的应用、勾股定理的应用
6. (2015福建龙岩22,12分)下列 ( http: / / www.21cnjy.com )网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.
( http: / / www.21cnjy.com )
(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;
(2)如图甲,把六边形ABC ( http: / / www.21cnjy.com )DEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;
(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.
考点: 图形的剪拼.
分析: (1)利用剪拼前后图形的面积相等,得出拼成的正方形的边长;
(2)利用平移拼出正方形;
(3)在六边形图形上剪拼成的正方形即可.
解答: 解:(1)根据剪拼前后图形的面积相等,得出拼成的正方形的边长==4,
(2)如图,②③都属于平移,
( http: / / www.21cnjy.com )
(3)如图乙:
( http: / / www.21cnjy.com )
点评: 本题主要考查了图形的剪拼,解题的关键是理解旋转、平移和轴对称的图形变换.
同课章节目录