专题 勾股定理在实际问题中的运用 巩固练习(无答案) 2024-2025学年苏科版数学八年级上册期中复习

文档属性

名称 专题 勾股定理在实际问题中的运用 巩固练习(无答案) 2024-2025学年苏科版数学八年级上册期中复习
格式 docx
文件大小 840.4KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2024-11-07 11:06:58

图片预览

文档简介

2024-2025学年苏科版数学八年级上册
期中复习专题4(勾股定理在实际问题中的运用)
(巩固练习)
【典型例题】
【例1】如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为(  )
A.2.2米 B.2.3米 C.2.4米 D.2.5米
【例2】 如图,某公园处有一块长方形草坪,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”AB.已知,,他们踩伤草坪,仅仅少走了_________.
【例3】《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几 ”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直(如图所示),试问绳索有多长 ”.根据题意求出绳索的长为______尺.
【例4】《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地;翻译成现代文为:如图,秋千静止时候,踏板离地高一尺(尺)将它往前推进两步(尺),此时踏板升高离地五尺(尺),求秋千绳索的长度.
【例5】如图,在笔直的公路旁有一座山,为方便运输货物现要从公路上的D处开凿隧道通一条公路到C处,已知点C与公路上的停靠站A的距离为,与公路上另一停靠站B的距离为,且,.
(1) 求修建的公路的长;
(2) 若公路建成后,一辆货车由C处途经D处到达B处的总路程是多少?
【举一反三】
【变式1】古代数学的“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB+AC=9尺,BC=3尺,则AC等于(  )尺.
A.3.5 B.4 C.4.5 D.5
【变式2】《九章算术》中有一题:今有开门去阃十寸,不合二寸,问门广几何?大意是:如图,从点( 是的中点)处推开双门,点与点距离门槛的距离,都为10寸,双门间隙,的距离为2寸(即为2寸),根据题意可列出的等式关系是( ).
A. B.
C. D.
【变式3】如图,一只蚂蚁沿着图示的路线从圆柱高的端点A到达,若圆柱底面半径为,高为5,则蚂蚁爬行的最短距离为 .
【变式4】在创建“全国文明城市”期间,某小区在临街的拐角清理出了一块可以绿化的空地.如图,经技术人员的测量,已知.若平均每平方米空地的绿化费用为100元,试计算绿化这片空地共需花费多少元?
【变式5】现有一个长、宽、高分别为5dm、4dm、3dm的无盖长方体木箱(如图,AB=5dm,BC=4dm,AE=3dm).
(1) 求线段BG的长;
(2) 现在箱外的点A处有一只蜘蛛,箱内的点C处有一只小虫正在午睡,保持不动.请你为蜘蛛设计一种捕虫方案,使得蜘蛛能以最短的路程捕捉到小虫.(木板的厚度忽略不计)
【巩固练习】
1.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为(  )
A.2.5m B.3m C.1.5m D.3.5m
2.如图,一棵大树在一次强台风中于离地面处折断倒下,树干顶部落在距根部处,这棵大树在折断前的高度为( )
A.5米 B.7米 C.8米 D.12米
3.如图,一个底面周长为24,高为5的圆柱体,一只蚂蚁沿侧表面从点到点所经过的最短路线长为( )
A. B. C. D.
4.九章算术》是我国古代的数学专著,是“算经十书”(汉唐之间 出现的十部古算书)中最重要的一种,共收有个数学问题,分为九章.在第九章“勾股”中有一题目:今有垣高一丈. 依木于垣,上与垣齐. 引木却行四尺,其木至地,问木长几何?意思是:一道墙高一丈(丈尺),一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长____________尺.

5.如图,台阶A处的蚂蚁要爬到B处搬运食物,则它爬行的最短距离为 _____.
6.如图,某自动感应门的正上方装着一个感应器,离地2.5米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时,感应门才自动打开,则感应器的最大感应距离是    米.
7.如图,车库的平面图中宽为米,一辆宽为米(即)的汽车正直停入车库(),车门,均长为米,当左侧车门接触到墙壁时,车门与车身的夹角为,若右侧车门从点旋转至点也接触到墙壁,则点相对点上移距离为______米.
8.如图所示,是一块地的平面图,其中米,米,米,米,,求这块地的面积.
9.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.
10.如图,已知圆柱底面的周长为12,圆柱的高为8,在圆柱的侧面上,过点A,C嵌有一圈长度最短的金属丝.
(1)现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是______.
(2)如图①,求该长度最短的金属丝的长.
(3)如图②,若将金属丝从点B绕四圈到达点A,则所需金属丝最短长度是多少?
11.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2 m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8 m和2.4 m,∠BOC=90°.
(1)△CEO与△ODB全等吗?请说明理由.
(2)爸爸在距离地面多高的地方接住小丽的?
(3)秋千的起始位置A处与距地面的高是 m.
12.著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为),也可以表示为,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则.
(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2)如图③,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路,且.测得千米,千米,求新路比原路少多少千米?
(3)在第(2)问中若时,,,,,设,求x的值.
同课章节目录