苏科版九年级数学下册5.5《用二次函数解决问题》教学课件(2份打包)

文档属性

名称 苏科版九年级数学下册5.5《用二次函数解决问题》教学课件(2份打包)
格式 zip
文件大小 599.1KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2016-03-13 17:16:14

文档简介

课件8张PPT。5.5 用二次函数解决问题(1)初三数学备课组1、二次函数 的顶点坐标是 ,与x轴的交点坐标是 ,与y轴的交点坐标是 ;
2、二次函数 的顶点坐标是 ,对称轴是 ,此函数有最 值为 。
复习旧知⑴若-3≤x≤3,该函数的最大值、最小值分别为
( )、( )。 ⑵又若0≤x≤3,该函数的最大值、最小值分别为
( )、( )。 求函数的最值问题,应注意什么?55 55 133、图中所示的二次函数图像的解析式为:
5 某种粮大户去年种植水稻360亩,平均每亩收益440元,他计划今年多承租若干亩稻田。预计原360亩稻田平均每亩收益不变,新承租的稻田每增加1亩,其每亩平均收益比去年每亩平均收益少2元。该种粮大户今年应多承租多少亩稻田,才能使总收益最大?例1分析:若设今年多承租X亩稻田,新承租的的稻田共收益 元;根据题意可得函数关系式: .例2 去年鱼塘里饲养鱼苗10千尾,平均每千尾的产量为1000千克,今年计划继续向鱼塘里投放鱼苗,预计每多投放1千尾,每千尾的产量将减少50千克,今年应投放鱼苗多少千尾,才能使总产量最大?最大总产量是多少? 设销售价为x元(x≤13.5元),那么某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.销售量可表示为 : 件;销售额可表示为: 元;所获利润可表示为: 元;当销售单价为 元时,可以获得最大利润,最大利润是 元.练习1 若你是商店经理,你需要多长时间定出这个销售单价? 某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?练习2归纳小结:运用二次函数的性质求实际问题的最大值和最小值的一般步骤 :求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内 。解这类题目的一般步骤课件12张PPT。面积问题二次函数的应用(2)用一根36cm长的铁丝围成一个矩形(接头忽略不计),它的一边长为xcm.
(1)写出这个矩形的面积S与边长x之间的函数关系式。
(2)一边长x为何值时,矩形的面积S最大?最大值是多少?
例1 如图,在ΔABC中,AB=8cm,BC=6cm,∠B=90°,点P从点A开始沿AB边向点B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以1厘米/秒的速度移动,如果P,Q分别从A,B同时出发,几秒后ΔPBQ的面积最大?最大面积是多少?例21、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。 解: (1) ∵ AB为x米、篱笆长为24米
∴ 花圃宽为(24-4x)米
(3) ∵墙的可用长度为8米
(2)当x= 时,S最大值= =36(平方米)∴ S=x(24-4x)
=-4x2+24 x (0∴ 0<24-4x ≤6 4≤x<6∴当x=4cm时,S最大值=32 平方米例3 室内通风和采光主要取决于门窗的个数和每个门窗的透光面积。如果计划用一段长12m的铝合金型材,制作一个上部是半圆、下部是矩形的窗框,那么当矩形的长、宽分别为多少时,才能使该窗户的透光面积最大(不计铝合金型材的宽度)?例4何时窗户通过的光线最多某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?变式(1).设矩形的一边AB=xm,那么AD边的长度如何表示?
(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大 如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上.xmbm(1).设矩形的一边BC=xm,那么AB边的长度如何表示?
(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?何时面积最大 如图,在一个直角三角形的内部作一个矩形ABCD,其顶点A和点D分别在两直角边上,BC在斜边上.xmbm2、在矩形荒地ABCD中,AB=10,BC=6,今在四边上分别选取E、F、G、H四点,且AE=AH=CF=CG=x,建一个花园,如何设计,可使花园面积最大?1.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:
(1)运动开始后第几秒时, △PBQ的面积等于8cm2
(2)设运动开始后第t秒时, 五边形APQCD的面积为Scm2, 写出S与t的函数关系式, 并指出自变量t的取值范围;
t为何值时S最小?求出S的最小值。 思考2.如图3,规格为60 cm×60 cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45 cm。现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN。
(1)设BN=x,BM=y,请用含x的代数式表示y,并写出x的取值范围;
(2)请用含x的代数式表示S,并在给定的直角坐标系内画出该函数的示意图;
(3)利用函数图象回2答:当x取何值时,S有最大值?最大值是多少? 图3归纳小结:运用二次函数的性质求实际问题的最大值和最小值的一般步骤 :求出函数解析式和自变量的取值范围配方变形,或利用公式求它的最大值或最小值。检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内 。解这类题目的一般步骤