9.1 不等式
9.1.2 不等式的性质
第1课时 不等式的性质
1.理解并掌握不等式的性质;(重点)
2.会利用不等式的性质解简单不等式.(重点、难点)
一、情境导入
小刚的爸爸今年32岁,小刚今年9岁,小刚说:“再过24年,我就比爸爸年龄大了.”小刚的说法对吗?为什么?
二、合作探究
探究点一:不等式的性质
【类型一】 比较代数式的大小
已知-x<-y,用“<”或“>”填空:
(1)-2x________-2y;
(2)2x________2y;
(3)x________y.
解析:(1)根据不等式的性质2,不等式两 ( http: / / www.21cnjy.com )边同乘以2,不等号方向不变,故填<;(2)根据不等式的性质3,不等式两边同乘以-2,不等号方向改变,故填>;(3)根据不等式的性质3,不等式两边同乘以-,不等号方向改变,故填>.
方法总结:利用不等式的性质2、3把不等式进 ( http: / / www.21cnjy.com )行变形时,首先必须弄清两边同时乘(或除以)的数的符号,如果这个数是正数,不等号的方向不变;如果是负数,不等号的方向改变.
变式训练:见《学练优》本课时练习“课后巩固提升”第1题
【类型二】 判断变形是否正确
根据不等式的性质,下列变形正确的是( )
A.由a>b得ac2>bc2
B.由ac2>bc2得a>b
C.由-a>2得a<2
D.由2x+1>x得x<-1
解析:A中a>b,c=0时,ac2=bc2 ( http: / / www.21cnjy.com ),故A错误;B中不等式的两边都乘(或除以)同一个正数,不等号的符号不改变,故B正确;C中不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边也应乘以-2,故C错误;D中不等式的两边都加或减同一个整式,不等号的方向不变,故D错误.故选B.
方法总结:本题考查了不等式的性质,注意不等式的两边都乘(或除以)同一个负数,不等号的方向改变.
变式训练:见《学练优》本课时练习“课后巩固提升”第3题
【类型三】 根据不等式的变形确定字母的取值范围
如果不等式(a+1)x<a+1可变形为x>1,那么a必须满足________.
解析:根据不等式的性质可判断a+1为负数,即a+1<0,可得a<-1.
方法总结:只有当不等式的两边都乘(或除以)一个负数时,不等号的方向才改变.
变式训练:见《学练优》本课时练习“课后巩固提升”第6题
探究点二:利用不等式的性质解简单的不等式
利用不等式的性质解下列不等式:
(1)2x-2<0;
(2)3x-9<6x;
(3)x-2>x-5.
解析:根据不等式的性质,把含未知数的项放到不等式的左边,常数项放到不等式的右边,然后把系数化为1.
解:(1)根据不等式的性质1,两边都加上2得2x<2.根据不等式的性质2,两边除以2得x<1;
(2)根据不等式的性质1,两边都加上9-6x得-3x<9.根据不等式的性质3,两边都除以-3得x>-3;
(3)根据不等式的性质1,两边都加上2-x得-x>-3.根据不等式的性质3,两边都除以-1得x<3.
方法总结:运用不等式的性质 ( http: / / www.21cnjy.com )进行变形时,可以先在不等式两边同时加上一个适当的代数式,使含未知数的项在不等式的左边,常数项在不等式的右边,然后把未知数的系数化为1.要注意的是:如果两边都乘(或除以)同一个正数,不等号的方向不变;如果两边都乘(或除以)同一个负数,不等号的方向改变.
变式训练:见《学练优》本课时练习“课后巩固提升”第7题
三、板书设计
不等式的性质1:如果a>b,那么a±c>b±c.
不等式的性质2:如果a>b,c>0,那么ac>bc(或>).
不等式的性质3:如果a>b,c<0,那么ac<bc(或<).
在学习不等式的性质时,可与等式 ( http: / / www.21cnjy.com )的性质进行类比学习.在课堂中,让学生大胆质疑,同时通过易错例题加深学生对不等式的性质3的理解和认识.通过学习,还需要学生能独立把不等式的三条性质用数学符号表示出来9.1 不等式
9.1.2 不等式的性质
第2课时 含“≤”“≥”的不等式
1.理解“≤”“≥”的含义,并掌握它们与“>”“<”的区别;(重点)
2.掌握不等式的解集如何在数轴上表示.(重点)
一、情境导入
如图所示是一条公路上的交通标志图案,它们有着不同的意义,你知道图中的80所表示的含义吗?试着用不等式表示出来.
二、合作探究
探究点一:认识含“≤”或“≥”的不等式
下列根据语句列出的不等式错误的是( )
A.“x的3倍与1的和是正数”,表示为3x+1>0
B.“m的与n的的差是非负数”,表示为m-n≥0
C.“x与y的和不大于a的”,表示x+y≤a
D.“a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab
解析:根据题意,找出关键词语“正数 ( http: / / www.21cnjy.com )”“非负数”“不大于”“不小于”列出不等式即可.A.“x的3倍与1的和是正数”,表示为3x+1>0,正确;B.“m的与n的的差是非负数”,表示为m-n≥0,正确;C.“x与y的和不大于a的”,表示为x+y≤a,正确;D.“a、b两数的和的3倍不小于这两数的积”,表示为3a+b≥ab错误,应表示为3(a+b)≥ab.故选D.
方法总结:此题主要考查了由实际问题列出不 ( http: / / www.21cnjy.com )等式,关键是抓住题目中的关键词,如大于(小于)、不超过(不低于)、是正数(负数)、至少、最多等等,正确选择不等号.
变式训练:见《学练优》本课时练习“课堂达标训练”第3题
小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x页,所列不等式为( )
A.10+8x≥72 B.2+10x≥72
C.10+8x≤72 D.2+10x≤72
解析:设以后每天读x页,根据小明借到 ( http: / / www.21cnjy.com )一本有72页的图书,要在10天之内读完,开始2天每天只读5页,可列出不等式2×5+(10-2)x≥72,整理得出10+8x≥72.故选A.
方法总结:本题考查了由实际问题抽象出一元一次不等式,关键设出每天读多少页,以总页数作为等量关系列方程.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
探究点二:在数轴上表示不等式的解集
根据不等式的性质,解下列不等式,并在数轴上表示解集:
(1)2x+5≥5x-4;
(2)4-3x≤4x-3
(3)-+1≥.
解析:先根据不等式的性质1,可以对不等 ( http: / / www.21cnjy.com )式进行变形,然后根据不等式的性质2或3,可把不等式化为“x>a”“x
解:(1)不等式两边同时减5x,得-3x+5≥-4.不等式两边同时减5,得-3x≥-9.不等式两边同时除以-3,得x≤3.
在数轴上表示x的取值范围如图所示.
(2)不等式两边同时加-4x-4,得-7x≤-7.不等式两边同时除以-7,得x≥1.在数轴上表示x的取值范围如图所示.
(3)运用不等式的性质2,两边同时乘6,得-4x+6≥3x-3.不等式两边同时加-3x-6,得-7x≥-9.两边同时除以-7,得x≤.
在数轴上表示x的取值范围如图所示.
方法总结:用数轴表示不等式的解 ( http: / / www.21cnjy.com )集的方法:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定“方向”.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画,x变式训练:见《学练优》本课时练习“课堂达标训练”第5题
三、板书设计
1.含“≥”“≤”的不等式
2.
利用数轴表示不等式的解集,能让 ( http: / / www.21cnjy.com )学生直观形象地了解不等式的解集的特征:不等式的解集中包括无限个解.由于数轴上右边的点表示的数总比左边的点表示的数大,所以大于向右画线,小于向左画线.教学时要特别注意解集的四种情况在数轴上表示的区别,这也是本节课中学生容易出错的地方