第六单元《百分数》(核心素养-填空题篇十六大题型)单元复习讲义(知识梳理+素养目标+典例精讲+专项精练)-2024-2025学年六年级数学上册(苏教版)(学生版+教师版)

文档属性

名称 第六单元《百分数》(核心素养-填空题篇十六大题型)单元复习讲义(知识梳理+素养目标+典例精讲+专项精练)-2024-2025学年六年级数学上册(苏教版)(学生版+教师版)
格式 zip
文件大小 1.5MB
资源类型 试卷
版本资源 苏教版
科目 数学
更新时间 2024-11-14 10:12:05

文档简介

第六单元 《百分数》 单元复习讲义(讲义)
六年级数学上册专项精练(知识梳理+素养目标+典例精讲+专项精练)
(导图高清,放大更清晰。)
1、核心素养目标:
(1)数学运算能力:学生能够熟练掌握百分数的运算规则,及百分数与小数、分数之间的转换。
(2)数学应用意识:学生能够将百分数的知识应用到实际生活情境中,解决与百分比相关的问题。
(3)数学逻辑思维:学生能够理解百分数的概念,掌握其表示方法,并能通过逻辑推理解决涉及百分数的数学问题。
(4)数学问题解决能力:学生能够运用百分数的知识,分析和解决实际问题,提高解决复杂问题的能力。
2、学习目标:
(1)理解百分数的意义,掌握百分数的读法和写法。
(2)能够将百分数转换为小数和分数,反之亦然。
(3)掌握百分数的基本运算。
(4)能够运用百分数解决实际问题。
(5)培养学生通过实际问题探究百分数应用的能力,增强数学学习的实践性和趣味性。
1、百分数的意义:表示一个数是另一个数的百分之几的数,百分数又叫作百分比或百分率。
2、百分数的读法:先读百分号(分母),读成“百分之”,再读百分号前面的数(分子)。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
1、百分数与小数的互化
①小数化成百分数,将它的小数点向右移动两位,同时在末尾添上百分号。
②百分数化成小数,小数点向左移动两位,同时去掉百分号。
③在移动小数点的过程中,如果位数不够,添0补足。
2、百分数与分数的互化
①把分数化成百分数,先把分数化成小数,再把小数化成百分数。
②百分数化成分数,先把百分数改写成分母是100的分数,再化成最简分数。
3、求一个数是另一个数的百分之几的实际问题
求一个数是另一个数的百分之几的解题方法与求一个数是另一个数的几分之几的解题方法相同,都用除法计算。
4、求百分率的实际问题
求百分率就是求一个数是另一个数的百分之几,用除法计算。
5、求一个数比另一个数多(少)百分之几的实际问题
求甲数比乙数多百分之几:(甲数-乙数)÷乙数;
求甲数比乙数多百分之几:甲数÷乙数-1;
求甲数比乙数少百分之几:(乙数-甲数)÷乙数;
求甲数比乙数少百分之几:1-甲数÷乙数。
求应纳税额就是求一个数的百分之几是多少?
用乘法计算:应纳税额=各种收入中应纳税部分×税率
2、与利息有关的实际问题
存入银行的钱叫作本金。取款时银行除还给本金外,另外付的钱叫作利息。利息占本金的百分率叫作利率。利息的计算方法:利息=本金×利率×时间
3、与折扣有关的实际问题
解决折扣问题,首先看是打几折,打几折就是按原价的百分之几十出售。现价=原价×折扣
4、列方程解决已知一部分数占总数的百分之几和另一部分数,求总数的问题
在实际问题中,要找准把哪个数量看作单位“1”,单位“1”未知时,通常设单位“1”为x,先找出题目中的数量关系,再列方程解决问题。
5、列方程解决已知两个量的数量关系和其中一个量,求另一个量的问题
在列方程解决已知两个量的数量关系和其中一个量,求另一个量的问题时,要注意先找准单位“1”的量,通常情况下设单位“1”的量为x,再根据另一个量与单位“1”的量之间的关系,用含有x的式子表示出另一个量,最后根据它们的和或差列出方程求解。
【典例精讲1】(22-23六年级上·江苏连云港·期末)米的是米,其中( )可以改写成百分数。
【答案】
【分析】百分数表示一个数是另一个数的百分之几,百分数不能带单位,不能表示具体的数量;而分数后面可以带单位,表示具体的数量;据此解答。
【详解】根据分析可知,可以改写成百分数;米和米不可以改写成百分数。
【点睛】本题主要考查了百分数和分数的认识和区别。
【典例精讲2】(23-24六年级上·江苏盐城·期末)=12÷( )=3∶( )=0.6=( )%=( )折。
【答案】9;20;5;60;六
【分析】先将小数0.6化成分数。
(1),根据分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外), 分数的大小不变,即可解答;
(2)根据分数与除法的关系:=3÷5=12÷( ),再根据商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变,即可解答;
(3)根据分数与比的关系:=3∶5,即可解答;
(4)把小数化成百分数,将小数点往右移动两位,再加上百分号即可;
(5)几折就是表示百分之几十,据此解答。
【详解】
(1)
(2)=3÷5=(3×4)÷(5×4)=12÷20
(3)=3∶5
(4)0.6=60%
(5)60%=六折
即=12÷20=3∶5=0.6=60%=六折
【典例精讲3】(24-25六年级上·江苏·期末)把一个长10厘米、宽8厘米、高6厘米的长方体木材截出一个最大的正方体,这个正方体的体积是原来长方体体积的( )%。
【答案】45
【分析】先求出长方体的体积:长方体体积=长×宽×高,即10×8×6=480(立方厘米)。再确定能截出的最大正方体的棱长:因为正方体的每条棱长都相等,而长方体最短的边是高6厘米,所以能截出的最大正方体棱长为6厘米。接着求这个正方体的体积:正方体体积=棱长×棱长×棱长,即6×6×6=216(立方厘米)。最后计算正方体体积是长方体体积的百分比:用正方体体积除以长方体体积再乘100%即可。
【详解】10×8×6=480(立方厘米)
6×6×6=216(立方厘米)
×100%=45%
这个正方体的体积是原来长方体体积的45%。
【典例精讲4】(23-24六年级上·江苏扬州·期末)比35平方米多是( )平方米;3千克比8千克少( )%。
【答案】 56 62.5
【分析】
把35平方米看作单位“1”,比它多,则求它的(1+)是多少平方米,用35×(1+)解答;
根据一个数比另一个数少百分之几,用两个数的差÷另一个数×100%,用3千克与8千克的差,除以8千克,再乘100%,即可求出3千克比8千克少百分之几。
【详解】35×(1+)
=35×
=56(平方米)
(8-3)÷8×100%
=5÷8×100%
=0.625×100%
=62.5%
比35平方米多是56平方米;3千克比8千克少62.5%。
【典例精讲5】(22-23六年级上·江苏盐城·期末)学校图书室有文艺书和科技书共680本,文艺书本数的正好等于科技书的75%,文艺书有( )本。
【答案】360
【分析】根据题目可以设文艺书的本数为x本,则科技书有:(680-x)本,求一个数的几分之几或百分之几,用乘法计算。所以,文艺书的本数×=科技书的本数×75%,由此即可列方程,再根据等式的性质解方程即可。
【详解】解:设文艺书的本数为x本,则科技书有:(680-x)本。
x=(680-x)×75%
x=510-x
x+x=510
x=510
x÷=510÷
x=510×
x=360
所以,文艺书有360本。
【典例精讲6】(22-23六年级上·江苏盐城·期末)一种大豆的出油率在24%~32%之间,李大爷榨了38.4千克油,最少用了( )千克大豆。
【答案】120
【分析】把大豆的总质量看作单位“1”,根据百分数除法的意义,要求大豆的最少质量,用油的质量除以最高的出油率,即可求出大豆的最少质量。
【详解】38.4÷32%=120(千克)
李大爷榨了38.4千克油,最少用了120千克大豆。
【典例精讲7】(22-23六年级上·江苏扬州·期末)一件毛衣比原来降价20%出售,相当于打( )折。如果现价56元,则原来售价( )元。
【答案】 八 70
【分析】几折表示百分之几十;将毛衣的原价看作单位“1”,用“1”减去20%,再将结果化成折数,即可求出毛衣打几折出售;如果现价是56元,根据百分数除法的意义,用56÷(1-20%)即可求出原价。
【详解】1-20%=80%
80%=八折
56÷(1-20%)
=56÷80%
=70(元)
一件毛衣比原来降价20%出售,相当于打八折。如果现价56元,则原来售价70元。
【典例精讲8】(22-23六年级上·江苏盐城·期末)千克的是( )千克;( )千米比56千米多12.5%;36分钟是2小时的( )%。
【答案】 63 30
【分析】把千克看作单位“1”,根据分数乘法的意义,用×即可求出千克的是多少千克;
把56千米看作单位“1”,求比56千米多12.5%是多少千米,就是求56千米的(1+12.5%)是多少,根据百分数乘法的意义,用56×(1+12.5%)即可求出结果;
将2小时化为120分钟,根据求一个数占另一个数的百分之几,用一个数除以另一个数再乘100%,则用36÷120×100%即可求出36分钟是2小时的百分之几。
【详解】×=(千克)
56×(1+12.5%)
=56×1.125
=63(千米)
2小时=120分钟
36÷120×100%=30%
千克的是千克,63千米比56千米多12.5%;36分钟是2小时的30%。
【典例精讲9】(23-24六年级上·江苏扬州·期末)瘦西湖景区门票是120元,10人以上打七五折,两位老师带40名学生去游玩,一共需要付( )元。
【答案】3780
【分析】老师人数+学生人数=总人数,门票钱数×总人数=应付钱数,将应付钱数看作单位“1”,几折就是百分之几十,应付钱数×折扣=实际付的钱数,据此列式计算。
【详解】120×(2+40)×75%
=120×42×0.75
=5040×0.75
=3780(元)
一共需要付3780元。
【典例精讲10】(22-23六年级上·江苏盐城·期末)某电商平台“双十一”促销活动,全场商品一律八折出售,王阿姨是商家金卡会员,还可以在打折的基础上凭金卡享受5%的优惠,她买一个礼盒实际付了380元,这个礼盒原价是( )元。
【答案】500
【分析】根据折扣的意义,八折就是原价的80%,打折后的价格凭金卡再降价5%,也就是实际价格是打折后价格的(1-5%),把打折后价格看作单位“1”,根据百分数除法的意义,用380÷(1-5%)即可求出打折后的价格,再把原价看作单位“1”,用打折后的价格除以80%即可求出原价。
【详解】八折=80%
380÷(1-5%)÷80%
=380÷95%÷80%
=400÷80%
=500(元)
这个礼盒原价是500元。
【典例精讲11】(23-24六年级上·江苏盐城·期末)( )÷20=0.6==24∶( )=( )%=( )折。
【答案】12;25;40;60;六
【分析】分数的分子相当于被除数、比的前项,分母相当于除数、比的后项,分数的分子和分母,同时乘或除以相同的数(0除外),分数的大小不变。据此先将小数化成分数,根据分数与除法和比的关系,以及它们通用的基本性质进行填空,小数化百分数,小数点向右移动两位,添上百分号即可,根据几折就是百分之几十,确定折数。
【详解】0.6=,20÷5×3=12;15÷3×5=25;24÷3×5=40;0.6=60%=六折
12÷20=0.6==24∶40=60%=六折
【典例精讲12】(23-24六年级上·江苏镇江·期末)张老师出版了一本《数学王国》,获得稿费4000元。按照规定,稿费超过800元的部分应缴纳14%的个人所得税,张老师实际获得稿费( )元。
【答案】3552
【分析】根据题意,先用张老师获得的稿费减去800元,求出超过的部分,超过部分按14%缴纳个人所得税,根据求一个数的百分之几是多少,用超过部分的金额乘14%,求出应缴纳的税额,再用未纳税前的稿费减去应纳税额,即是张老师实际获得的稿费。
【详解】(4000-800)×14%
=3200×0.14
=448(元)
4000-448=3552(元)
张老师实际获得稿费3552元。
【典例精讲13】(23-24六年级上·江苏扬州·期末)王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息( )元。
【答案】8670.83
【分析】
根据应缴税部分×税率=应交税款,代入数据,求出应缴税款;再用收入-应缴税款,求出实际收入;根据利息公式:利息=本金×利率×时间,代入数据,求出到期的利息,再加上本金,即可解答。
【详解】9000×(1-11%)
=9000×89%
=8010(元)
8010×2.75%×3
=220.275×3
≈660.83
8010+660.83=8670.83(元)
王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息8670.83元。
【典例精讲14】(22-23六年级上·江苏苏州·期末)陈老师出版了一本《小学数学100问》,获得稿费6000元。按规定,稿费4000元以上的应缴纳14%的个人所得税,陈老师实际获得稿费( )元。
【答案】5720
【分析】计算出超出4000元部分应缴纳的税款,再用稿费减去税款求得实际稿费。
【详解】6000-(6000-4000)×14%
=6000-2000×14%
=6000-280
=5720(元)
陈老师出版了一本《小学数学100问》,获得稿费6000元。按规定,稿费4000元以上的应缴纳14%的个人所得税,陈老师实际获得稿费5720元。
【点睛】注意只有超出4000元的部分才需要缴纳个人所得税。
【典例精讲15】(22-23六年级上·江苏盐城·期末)明明家最近向银行贷款30万元,贷款期限10年。到期时共要还利息( )万元。
贷款
项目 年利率
五年以下(含五年) 4.00%
五年以上 4.50%
【答案】13.5
【分析】根据题意,货款30万元,贷款期限10年,从表中可知,货款10年的年利率是4.50%,根据“利息=本金×利率×时间”,即可求出到期后共要还的利息。
【详解】30×4.50%×10
=30×0.045×10
=1.35×10
=13.5(万元)
到期时共要还利息13.5万元。
【典例精讲16】(22-23六年级上·江苏盐城·期末)根据下图中的信息进行计算,完成复制这个文件一共要( )秒。(“M”是表示电脑文件容量大小的单位)
【答案】50
【分析】由图知,把复制这份文件所用的时间看作单位“1”,现已完成了全部文件的80%,则还剩下全部文件的(1-80%),剩余时间是10秒,根据公式:对应量÷对应百分率=单位“1”,用剩余时间除以其占全部文件的百分率,即得全部完成需要多少时间。
【详解】10÷(1-80%)
=10÷20%
=10÷0.2
=50(秒)
所以完成复制这个文件一共要50秒。
学校:___________ 姓名:___________ 班级:___________
填空题
1.(23-24六年级上·江苏镇江·期末)35∶( )==( )÷72==( )(填百分数)。
2.(23-24六年级上·江苏徐州·期末)( )( )=( )%=( )折。
3.(22-23六年级上·江苏连云港·期末)=( )(填小数)=( )(填百分数)。
4.(22-23六年级上·江苏宿迁·期末)20÷( )=80%==( )∶( )=( )折=( )(填小数)。
5.(24-25六年级上·江苏·期末)在括号里填上“>”“<”或“=”。
( )3 ( )
( ) ( )
6.(22-23六年级上·江苏常州·期末)50比40多( )%,240的30%是( ),27比30少( )%。
7.(22-23六年级上·江苏盐城·期末)15分米的是( )分米;50千克比40千克多( )%。
8.(23-24六年级上·江苏镇江·期末)( )千米的是千米;45米比( )米少10%。
9.(23-24六年级上·江苏扬州·期末)比35平方米多是( )平方米;3千克比8千克少( )%。
10.(23-24六年级上·江苏镇江·期末)一杯水270克,小灿在杯里加入了30克盐,这杯盐水的含盐率是( );小蔓在这杯水里又加入了10克盐和50克水,此时这杯盐水的含盐率( )。(填“变高”“降低”“不变”)
11.(23-24六年级上·江苏徐州·期末)徐州九顶山野生动物园亲子乐园养的灰兔比白兔少12只,灰兔的只数是白兔的40%。白兔养了( )只,灰兔养了( )只。
12.(22-23六年级上·江苏南通·期末)王大叔用50千克菜籽榨了20千克的油。照这样计算,榨1千克油需( )千克菜籽,1千克菜籽可榨( )千克的油,这种菜籽的出油率是( )。
13.(22-23六年级上·江苏泰州·期末)60千克的是( )千克,( )千克的40%是12千克,比6吨多是( )吨,比6吨多吨是( )吨。
14.(23-24六年级上·江苏徐州·期末)为了绿化城市,楚河沿岸要栽种一批树苗,这批树苗的成活率为80%~90%,如果要确保栽成活720棵,至少要栽种( )棵树苗。
15.(22-23六年级上·江苏常州·期末)男生人数是女生人数的,则女生与男生人数的比是( ),男生约占总人数的( )%(百分号前面保留一位小数)。
16.(22-23六年级上·江苏常州·期末)比30分米长是( )分米,0.4吨比0.5吨少( )%,203平方米比( )平方米少30%。
17.(22-23六年级上·江苏常州·期末)元旦期间,美丽服装店的一件羽绒服的售价是1000元,比原价便宜了250元,这件大衣打( )折出售。照这个优惠力度,一件原价1500元的大衣,现在售价( )元。
18.(22-23六年级上·江苏常州·期末)一件商品,如果卖100元,可赚25%,这件商品进价( )元;如果卖120元,可赚( )%。
19.(22-23六年级上·江苏宿迁·期末)比100米多20%是( )米,75千克比( )千克多25%。比2.5升多升是( )升,9米比5米多( )%。
20.(22-23六年级上·江苏宿迁·期末)花生的出油率是40%,160千克花生能榨油( )千克;要榨160千克油需花生( )千克。
21.(22-23六年级上·江苏宿迁·期末)王叔叔将10000元存入银行,定期三年,年利率是2.75%。到期时,他从银行取回( )元。
22.(22-23六年级上·江苏宿迁·期末)妈妈用560元买一件羽绒服,比原价优惠了20%,相当于打( )折买的,这件羽绒服原价( )元。
23.(23-24六年级上·江苏盐城·期末)六(1)班学生数在40~50人之间,男生人数是女生人数的,则男生有( )人,女生有( )人,女生是男生的( )%。
24.(22-23六年级上·江苏镇江·期末)建筑工地要运进一批水泥,已经运了30%,还剩56吨没有运,这批水泥有( )吨。
25.(22-23六年级上·江苏淮安·期末)公鸡和母鸡只数比是8∶5,则母鸡的只数是公鸡的( )%,母鸡的只数比公鸡少。
26.(22-23六年级上·江苏淮安·期末)一种洗衣液采用“买四送一”的方法促销,即:买4瓶,另外免费赠送一瓶同样的洗衣液。这种洗衣液促销期间的实际售价是原定价的( )%;如果采用“买三送二”的方式促销,是打( )折。
27.(22-23六年级上·江苏苏州·期末)“双十一”期间,《儿童百问》套装书打三折出售,方芳买这套书花了120元,那么《儿童百问》套装书的原价是( )元,便宜了( )%。
28.(22-23六年级上·江苏扬州·期末)小亮用200粒黄豆做发芽试验,7天后,发芽率是85%,说明( )的粒数占总粒数的85%,未发芽的粒数占总粒数的( )。
29.(22-23六年级上·江苏扬州·期末)支付宝推出一项贷款业务,日利率为0.05%(借100元每天还利息0.05元)。张小宁急需用钱从支付宝中借了4万元,共借了10天。他一共要还利息( )元。
30.(22-23六年级上·江苏扬州·期末)下面是某小学六(1)班同学体质健康测试成绩统计表。请根据以下条件,先计算,再把表格填写完整。
(1)这个班体质健康测试的及格率是95%。
(2)成绩优秀的人数与全班总人数的比为7∶20。
(3)成绩良好的人数比优秀的人数多。
六(1)班同学体质健康测试成绩统计表:
成绩 合计 优秀 良好 及格 不及格
人数 2
31.(22-23六年级上·江苏徐州·期末)两人共同投资100万元加工产品。其中王叔叔投资了40万元,李叔叔投资了60万元。去年可分配的利润是20万元,按投资额分配,王叔叔应该分得利润( )万元。如果王叔叔把自己分得的利润存入银行,定期两年,年利率是3.75%,到期王叔叔可获得利息( )元。
32.(22-23六年级上·江苏南京·期末)小力在“小小科学家”活动中进行植物种子出油试验,试验结果如下表。
种类 质量/g 出油质量/g
花生仁 500 200
芝麻 400 180
油菜籽 100 38
(1)花生仁的出油率是( )。
(2)若用2000克油菜籽,则可以榨菜籽油( )克。若要榨720克芝麻油,则需要( )克芝麻。
33.(22-23六年级上·江苏泰州·期末)陈老师给报社投稿,获得稿费2800元。按照规定,超过800元的部分应缴纳5%的个人所得税,他实际可拿到( )元。
34.(23-24六年级上·江苏扬州·期末)中国代表团在2022年北京冬奥会上获得9枚金牌、4枚银牌、2枚铜牌。中国代表团获得金牌数是获得奖牌总数的( )%。
35.(23-24六年级上·江苏扬州·期末)瘦西湖景区门票是120元,10人以上打七五折,两位老师带40名学生去游玩,一共需要付( )元。
36.(23-24六年级上·江苏扬州·期末)吨小麦可以磨面粉吨,这种小麦的出粉率是( ),照这样计算,( )吨小麦可以磨出2吨面粉。
37.(23-24六年级上·江苏盐城·期末)绿化队植树,先栽了20棵,有4棵没有成活,这时,树苗的成活率是( )%,后来又补种了4棵,全部成活,这时树苗的成活率是( )%。
38.(23-24六年级上·江苏盐城·期末)( )米比120米多,千米是( )千米的,72千克减少千克是( )千克,35吨的( )%是7吨,10千克比80千克轻( )%。
39.(23-24六年级上·江苏扬州·期末)王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息( )元。
40.(22-23六年级上·江苏南通·期末)一种商品定价30元,售出后可获利50%,这种商品成本价( )元。如果按定价的七五折售出,可获利( )元。如果开始按成本价提高20%出售,后来因为市场原因,打八折出售,现在售价( )元。
21世纪教育网(www.21cnjy.com)第六单元 《百分数》 单元复习讲义(讲义)
六年级数学上册专项精练(知识梳理+素养目标+典例精讲+专项精练)
(导图高清,放大更清晰。)
1、核心素养目标:
(1)数学运算能力:学生能够熟练掌握百分数的运算规则,及百分数与小数、分数之间的转换。
(2)数学应用意识:学生能够将百分数的知识应用到实际生活情境中,解决与百分比相关的问题。
(3)数学逻辑思维:学生能够理解百分数的概念,掌握其表示方法,并能通过逻辑推理解决涉及百分数的数学问题。
(4)数学问题解决能力:学生能够运用百分数的知识,分析和解决实际问题,提高解决复杂问题的能力。
2、学习目标:
(1)理解百分数的意义,掌握百分数的读法和写法。
(2)能够将百分数转换为小数和分数,反之亦然。
(3)掌握百分数的基本运算。
(4)能够运用百分数解决实际问题。
(5)培养学生通过实际问题探究百分数应用的能力,增强数学学习的实践性和趣味性。
1、百分数的意义:表示一个数是另一个数的百分之几的数,百分数又叫作百分比或百分率。
2、百分数的读法:先读百分号(分母),读成“百分之”,再读百分号前面的数(分子)。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
1、百分数与小数的互化
①小数化成百分数,将它的小数点向右移动两位,同时在末尾添上百分号。
②百分数化成小数,小数点向左移动两位,同时去掉百分号。
③在移动小数点的过程中,如果位数不够,添0补足。
2、百分数与分数的互化
①把分数化成百分数,先把分数化成小数,再把小数化成百分数。
②百分数化成分数,先把百分数改写成分母是100的分数,再化成最简分数。
3、求一个数是另一个数的百分之几的实际问题
求一个数是另一个数的百分之几的解题方法与求一个数是另一个数的几分之几的解题方法相同,都用除法计算。
4、求百分率的实际问题
求百分率就是求一个数是另一个数的百分之几,用除法计算。
5、求一个数比另一个数多(少)百分之几的实际问题
求甲数比乙数多百分之几:(甲数-乙数)÷乙数;
求甲数比乙数多百分之几:甲数÷乙数-1;
求甲数比乙数少百分之几:(乙数-甲数)÷乙数;
求甲数比乙数少百分之几:1-甲数÷乙数。
求应纳税额就是求一个数的百分之几是多少?
用乘法计算:应纳税额=各种收入中应纳税部分×税率
2、与利息有关的实际问题
存入银行的钱叫作本金。取款时银行除还给本金外,另外付的钱叫作利息。利息占本金的百分率叫作利率。利息的计算方法:利息=本金×利率×时间
3、与折扣有关的实际问题
解决折扣问题,首先看是打几折,打几折就是按原价的百分之几十出售。现价=原价×折扣
4、列方程解决已知一部分数占总数的百分之几和另一部分数,求总数的问题
在实际问题中,要找准把哪个数量看作单位“1”,单位“1”未知时,通常设单位“1”为x,先找出题目中的数量关系,再列方程解决问题。
5、列方程解决已知两个量的数量关系和其中一个量,求另一个量的问题
在列方程解决已知两个量的数量关系和其中一个量,求另一个量的问题时,要注意先找准单位“1”的量,通常情况下设单位“1”的量为x,再根据另一个量与单位“1”的量之间的关系,用含有x的式子表示出另一个量,最后根据它们的和或差列出方程求解。
【典例精讲1】(22-23六年级上·江苏连云港·期末)米的是米,其中( )可以改写成百分数。
【答案】
【分析】百分数表示一个数是另一个数的百分之几,百分数不能带单位,不能表示具体的数量;而分数后面可以带单位,表示具体的数量;据此解答。
【详解】根据分析可知,可以改写成百分数;米和米不可以改写成百分数。
【点睛】本题主要考查了百分数和分数的认识和区别。
【典例精讲2】(23-24六年级上·江苏盐城·期末)=12÷( )=3∶( )=0.6=( )%=( )折。
【答案】9;20;5;60;六
【分析】先将小数0.6化成分数。
(1),根据分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外), 分数的大小不变,即可解答;
(2)根据分数与除法的关系:=3÷5=12÷( ),再根据商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变,即可解答;
(3)根据分数与比的关系:=3∶5,即可解答;
(4)把小数化成百分数,将小数点往右移动两位,再加上百分号即可;
(5)几折就是表示百分之几十,据此解答。
【详解】
(1)
(2)=3÷5=(3×4)÷(5×4)=12÷20
(3)=3∶5
(4)0.6=60%
(5)60%=六折
即=12÷20=3∶5=0.6=60%=六折
【典例精讲3】(24-25六年级上·江苏·期末)把一个长10厘米、宽8厘米、高6厘米的长方体木材截出一个最大的正方体,这个正方体的体积是原来长方体体积的( )%。
【答案】45
【分析】先求出长方体的体积:长方体体积=长×宽×高,即10×8×6=480(立方厘米)。再确定能截出的最大正方体的棱长:因为正方体的每条棱长都相等,而长方体最短的边是高6厘米,所以能截出的最大正方体棱长为6厘米。接着求这个正方体的体积:正方体体积=棱长×棱长×棱长,即6×6×6=216(立方厘米)。最后计算正方体体积是长方体体积的百分比:用正方体体积除以长方体体积再乘100%即可。
【详解】10×8×6=480(立方厘米)
6×6×6=216(立方厘米)
×100%=45%
这个正方体的体积是原来长方体体积的45%。
【典例精讲4】(23-24六年级上·江苏扬州·期末)比35平方米多是( )平方米;3千克比8千克少( )%。
【答案】 56 62.5
【分析】
把35平方米看作单位“1”,比它多,则求它的(1+)是多少平方米,用35×(1+)解答;
根据一个数比另一个数少百分之几,用两个数的差÷另一个数×100%,用3千克与8千克的差,除以8千克,再乘100%,即可求出3千克比8千克少百分之几。
【详解】35×(1+)
=35×
=56(平方米)
(8-3)÷8×100%
=5÷8×100%
=0.625×100%
=62.5%
比35平方米多是56平方米;3千克比8千克少62.5%。
【典例精讲5】(22-23六年级上·江苏盐城·期末)学校图书室有文艺书和科技书共680本,文艺书本数的正好等于科技书的75%,文艺书有( )本。
【答案】360
【分析】根据题目可以设文艺书的本数为x本,则科技书有:(680-x)本,求一个数的几分之几或百分之几,用乘法计算。所以,文艺书的本数×=科技书的本数×75%,由此即可列方程,再根据等式的性质解方程即可。
【详解】解:设文艺书的本数为x本,则科技书有:(680-x)本。
x=(680-x)×75%
x=510-x
x+x=510
x=510
x÷=510÷
x=510×
x=360
所以,文艺书有360本。
【典例精讲6】(22-23六年级上·江苏盐城·期末)一种大豆的出油率在24%~32%之间,李大爷榨了38.4千克油,最少用了( )千克大豆。
【答案】120
【分析】把大豆的总质量看作单位“1”,根据百分数除法的意义,要求大豆的最少质量,用油的质量除以最高的出油率,即可求出大豆的最少质量。
【详解】38.4÷32%=120(千克)
李大爷榨了38.4千克油,最少用了120千克大豆。
【典例精讲7】(22-23六年级上·江苏扬州·期末)一件毛衣比原来降价20%出售,相当于打( )折。如果现价56元,则原来售价( )元。
【答案】 八 70
【分析】几折表示百分之几十;将毛衣的原价看作单位“1”,用“1”减去20%,再将结果化成折数,即可求出毛衣打几折出售;如果现价是56元,根据百分数除法的意义,用56÷(1-20%)即可求出原价。
【详解】1-20%=80%
80%=八折
56÷(1-20%)
=56÷80%
=70(元)
一件毛衣比原来降价20%出售,相当于打八折。如果现价56元,则原来售价70元。
【典例精讲8】(22-23六年级上·江苏盐城·期末)千克的是( )千克;( )千米比56千米多12.5%;36分钟是2小时的( )%。
【答案】 63 30
【分析】把千克看作单位“1”,根据分数乘法的意义,用×即可求出千克的是多少千克;
把56千米看作单位“1”,求比56千米多12.5%是多少千米,就是求56千米的(1+12.5%)是多少,根据百分数乘法的意义,用56×(1+12.5%)即可求出结果;
将2小时化为120分钟,根据求一个数占另一个数的百分之几,用一个数除以另一个数再乘100%,则用36÷120×100%即可求出36分钟是2小时的百分之几。
【详解】×=(千克)
56×(1+12.5%)
=56×1.125
=63(千米)
2小时=120分钟
36÷120×100%=30%
千克的是千克,63千米比56千米多12.5%;36分钟是2小时的30%。
【典例精讲9】(23-24六年级上·江苏扬州·期末)瘦西湖景区门票是120元,10人以上打七五折,两位老师带40名学生去游玩,一共需要付( )元。
【答案】3780
【分析】老师人数+学生人数=总人数,门票钱数×总人数=应付钱数,将应付钱数看作单位“1”,几折就是百分之几十,应付钱数×折扣=实际付的钱数,据此列式计算。
【详解】120×(2+40)×75%
=120×42×0.75
=5040×0.75
=3780(元)
一共需要付3780元。
【典例精讲10】(22-23六年级上·江苏盐城·期末)某电商平台“双十一”促销活动,全场商品一律八折出售,王阿姨是商家金卡会员,还可以在打折的基础上凭金卡享受5%的优惠,她买一个礼盒实际付了380元,这个礼盒原价是( )元。
【答案】500
【分析】根据折扣的意义,八折就是原价的80%,打折后的价格凭金卡再降价5%,也就是实际价格是打折后价格的(1-5%),把打折后价格看作单位“1”,根据百分数除法的意义,用380÷(1-5%)即可求出打折后的价格,再把原价看作单位“1”,用打折后的价格除以80%即可求出原价。
【详解】八折=80%
380÷(1-5%)÷80%
=380÷95%÷80%
=400÷80%
=500(元)
这个礼盒原价是500元。
【典例精讲11】(23-24六年级上·江苏盐城·期末)( )÷20=0.6==24∶( )=( )%=( )折。
【答案】12;25;40;60;六
【分析】分数的分子相当于被除数、比的前项,分母相当于除数、比的后项,分数的分子和分母,同时乘或除以相同的数(0除外),分数的大小不变。据此先将小数化成分数,根据分数与除法和比的关系,以及它们通用的基本性质进行填空,小数化百分数,小数点向右移动两位,添上百分号即可,根据几折就是百分之几十,确定折数。
【详解】0.6=,20÷5×3=12;15÷3×5=25;24÷3×5=40;0.6=60%=六折
12÷20=0.6==24∶40=60%=六折
【典例精讲12】(23-24六年级上·江苏镇江·期末)张老师出版了一本《数学王国》,获得稿费4000元。按照规定,稿费超过800元的部分应缴纳14%的个人所得税,张老师实际获得稿费( )元。
【答案】3552
【分析】根据题意,先用张老师获得的稿费减去800元,求出超过的部分,超过部分按14%缴纳个人所得税,根据求一个数的百分之几是多少,用超过部分的金额乘14%,求出应缴纳的税额,再用未纳税前的稿费减去应纳税额,即是张老师实际获得的稿费。
【详解】(4000-800)×14%
=3200×0.14
=448(元)
4000-448=3552(元)
张老师实际获得稿费3552元。
【典例精讲13】(23-24六年级上·江苏扬州·期末)王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息( )元。
【答案】8670.83
【分析】
根据应缴税部分×税率=应交税款,代入数据,求出应缴税款;再用收入-应缴税款,求出实际收入;根据利息公式:利息=本金×利率×时间,代入数据,求出到期的利息,再加上本金,即可解答。
【详解】9000×(1-11%)
=9000×89%
=8010(元)
8010×2.75%×3
=220.275×3
≈660.83
8010+660.83=8670.83(元)
王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息8670.83元。
【典例精讲14】(22-23六年级上·江苏苏州·期末)陈老师出版了一本《小学数学100问》,获得稿费6000元。按规定,稿费4000元以上的应缴纳14%的个人所得税,陈老师实际获得稿费( )元。
【答案】5720
【分析】计算出超出4000元部分应缴纳的税款,再用稿费减去税款求得实际稿费。
【详解】6000-(6000-4000)×14%
=6000-2000×14%
=6000-280
=5720(元)
陈老师出版了一本《小学数学100问》,获得稿费6000元。按规定,稿费4000元以上的应缴纳14%的个人所得税,陈老师实际获得稿费5720元。
【点睛】注意只有超出4000元的部分才需要缴纳个人所得税。
【典例精讲15】(22-23六年级上·江苏盐城·期末)明明家最近向银行贷款30万元,贷款期限10年。到期时共要还利息( )万元。
贷款
项目 年利率
五年以下(含五年) 4.00%
五年以上 4.50%
【答案】13.5
【分析】根据题意,货款30万元,贷款期限10年,从表中可知,货款10年的年利率是4.50%,根据“利息=本金×利率×时间”,即可求出到期后共要还的利息。
【详解】30×4.50%×10
=30×0.045×10
=1.35×10
=13.5(万元)
到期时共要还利息13.5万元。
【典例精讲16】(22-23六年级上·江苏盐城·期末)根据下图中的信息进行计算,完成复制这个文件一共要( )秒。(“M”是表示电脑文件容量大小的单位)
【答案】50
【分析】由图知,把复制这份文件所用的时间看作单位“1”,现已完成了全部文件的80%,则还剩下全部文件的(1-80%),剩余时间是10秒,根据公式:对应量÷对应百分率=单位“1”,用剩余时间除以其占全部文件的百分率,即得全部完成需要多少时间。
【详解】10÷(1-80%)
=10÷20%
=10÷0.2
=50(秒)
所以完成复制这个文件一共要50秒。
学校:___________ 姓名:___________ 班级:___________
填空题
1.(23-24六年级上·江苏镇江·期末)35∶( )==( )÷72==( )(填百分数)。
【答案】40;63;16;87.5%
【分析】分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变;
分数与比的关系:分子相当于比的前项,分母相当于比的后项,分数线相当于比号;
分数与除法的关系:分子相当于被除数,分母相当于除数,分数线相当于除号;
分数化成小数,用分子除以分母即可;
小数化成百分数,小数点向右移动两位,同时在数的后面添上百分号。
【详解】==,=35∶40
==,=63÷72
==
=7÷8=0.875=87.5%
即35∶40==63÷72==87.5%。
2.(23-24六年级上·江苏徐州·期末)( )( )=( )%=( )折。
【答案】 15 16 75 七五
【分析】分数的分子相当于被除数、比的前项,分母相当于除数、比的后项,分数的分子和分母,同时乘或除以相同的数(0除外),分数的大小不变。据此根据分数与除法和比的关系,以及它们通用的基本性质进行填空,分数化小数,直接用分子÷分母,小数化百分数,小数点向右移动两位,添上百分号即可,根据几折就是百分之几十,确定折数。
【详解】20÷4×3=15;12÷3×4=16;3÷4=0.75=75%=七五折
1516=75%=七五折
3.(22-23六年级上·江苏连云港·期末)=( )(填小数)=( )(填百分数)。
【答案】 0.125 12.5%
【分析】用的分子除以分母即可化为小数,即=0.125;把0.125的小数点向右移动两位,再加上百分号即可化为百分数,即0.125=12.5%。据此填空即可。
【详解】由分析可知:
=0.125=12.5%
4.(22-23六年级上·江苏宿迁·期末)20÷( )=80%==( )∶( )=( )折=( )(填小数)。
【答案】25;16;4;5;八;0.8
【分析】分数的分子相当于被除数、比的前项,分母相当于除数、比的后项;分数的分子和分母,同时乘或除以相同的数(0除外),分数的大小不变。据悉先将百分数化成分数,根据分数与除法和比的关系,以及它们通用的基本性质进行填空;几折就是百分之几十;百分数化小数,去掉百分号,小数点向左移动两位即可。
【详解】80%===4∶5;20÷4×5=25;20÷5×4=16;80%=八折=0.8
20÷25=80%==4∶5=八折=0.8
【点睛】关键是掌握百分数、分数、小数、比之间相互转化的方法,理解折扣的意义。
5.(24-25六年级上·江苏·期末)在括号里填上“>”“<”或“=”。
( )3 ( )
( ) ( )
【答案】 < > = <
【分析】一个非0数乘小于1的数,积小于原数;一个非0数乘大于1的数,积大于原数。
一个非0数除以小于1的数,商大于被除数;一个非0数除以大于1的数,商小于被除数。
百分数化分数,先化成分母是100的分数,再约分成最简分数。
【详解】<1,则<3;<1,则>;40%==,则=;
<1,则<<,所以<。
6.(22-23六年级上·江苏常州·期末)50比40多( )%,240的30%是( ),27比30少( )%。
【答案】 25 72 10
【分析】求50比40多百分之几,先用50减去40,求出50比40多的数,再除以40即可得解;求240的30%是多少,实际是求一个数的百分之几是多少,用乘法,用240乘30%即可得解;求27比30少百分之几,先用30减去27,求出27比30少的数,再除以30即可得解;
【详解】(50-40)÷40×100%
=10÷40×100%
=0.25×100%
=25%
240×30%=72
(30-27)÷30×100%
=3÷30×100%
=0.1×100%
=10%
即50比40多25%,240的30%是72,27比30少10%。
【点睛】此题的解题关键是掌握求一个数的百分之几是多少和求一个数比另一个数多(或少)百分之几的计算方法。
7.(22-23六年级上·江苏盐城·期末)15分米的是( )分米;50千克比40千克多( )%。
【答案】 6 25
【分析】求一个数的几分之几是多少用乘法,即用15乘上;求一个数比另一个数多多少用除法,把40看成单位“1”,用50减去40的差除以单位“1”即可算出答案。
【详解】15×=6(分米)
(50-40)÷40
=10÷40
=0.25
=25%
【点睛】此题考查了分数乘法以及百分数的应用。要求学生熟练掌握并灵活运用。
8.(23-24六年级上·江苏镇江·期末)( )千米的是千米;45米比( )米少10%。
【答案】 50
【分析】把要求的数看作单位“1”,它的对应的是千米,求单位“1”,用÷解答;
把要求的数看作单位“1”,它的(1-10%)对应的是45米,求单位“1”,用45÷(1-45%)解答。
【详解】÷
=×6
=(千米)
45÷(1-10%)
=45÷90%
=50(米)
千米的是千米;45米比50米少10%。
9.(23-24六年级上·江苏扬州·期末)比35平方米多是( )平方米;3千克比8千克少( )%。
【答案】 56 62.5
【分析】
把35平方米看作单位“1”,比它多,则求它的(1+)是多少平方米,用35×(1+)解答;
根据一个数比另一个数少百分之几,用两个数的差÷另一个数×100%,用3千克与8千克的差,除以8千克,再乘100%,即可求出3千克比8千克少百分之几。
【详解】35×(1+)
=35×
=56(平方米)
(8-3)÷8×100%
=5÷8×100%
=0.625×100%
=62.5%
比35平方米多是56平方米;3千克比8千克少62.5%。
10.(23-24六年级上·江苏镇江·期末)一杯水270克,小灿在杯里加入了30克盐,这杯盐水的含盐率是( );小蔓在这杯水里又加入了10克盐和50克水,此时这杯盐水的含盐率( )。(填“变高”“降低”“不变”)
【答案】 10% 变高
【分析】(1)已知小灿往270克水中加入了30克盐,先用盐的质量加上水的质量,求出盐水的质量;然后根据含盐率=盐的质量÷盐水的质量×100%,求出这杯盐水的含盐率。
(2)已知小蔓在这杯水里又加入了10克盐和50克水,先根据含盐率的计算方法求出小蔓后来加入的盐水的含盐率,再与原来盐水的含盐率进行比较,得出结论。
【详解】(1)30÷(30+270)×100%
=30÷300×100%
=0.1×100%
=10%
这杯盐水的含盐率是10%。
(2)小蔓加入盐水的含盐率:
10÷(10+50)×100%
=10÷60×100%
≈0.167×100%
=16.7%
16.7%>10%
此时这杯盐水的含盐率变高。
11.(23-24六年级上·江苏徐州·期末)徐州九顶山野生动物园亲子乐园养的灰兔比白兔少12只,灰兔的只数是白兔的40%。白兔养了( )只,灰兔养了( )只。
【答案】 20 8
【分析】假设灰兔养了只,则白兔养了只,灰兔的只数是白兔的40%,所以白兔的只数×40%=灰兔的只数,据此列方程求解即可。
【详解】解:设灰兔养了只,则白兔养了只,
(只)
所以白兔养了20只,灰兔养了8只。
12.(22-23六年级上·江苏南通·期末)王大叔用50千克菜籽榨了20千克的油。照这样计算,榨1千克油需( )千克菜籽,1千克菜籽可榨( )千克的油,这种菜籽的出油率是( )。
【答案】 40%
【分析】求榨1千克油需多少千克菜籽,用菜籽的质量除以油的质量即可;
求1千克菜籽可榨多少千克的油,用油的质量除以菜籽的质量即可;
菜籽出油率的意思是,菜籽油的质量占菜籽质量的百分之几;计算方法“出油率=菜籽油的质量÷菜籽的质量×100%”,代入数据计算,即可求出这种菜籽的出油率。
【详解】50÷20=(千克)
20÷50=(千克)
20÷50×100%
=0.4×100%
=40%
榨1千克油需千克菜籽,1千克菜籽可榨千克的油,这种菜籽的出油率是40%。
【点睛】本题考查分数与除法的关系以及百分率的问题,区分前两种问题的不同,求菜籽的质量时,除法算式中菜籽的质量作被除数;求菜籽油的质量时,除法算式中菜籽油的质量作被除数。
13.(22-23六年级上·江苏泰州·期末)60千克的是( )千克,( )千克的40%是12千克,比6吨多是( )吨,比6吨多吨是( )吨。
【答案】 36 30 9
【分析】第一个空,已知质量是单位“1”,已知质量×所求质量对应分率=所求质量;
第二个空,所求质量是单位“1”,已知质量÷对应百分率=所求质量;
第三个空,已知质量是单位“1”,所求质量是已知质量的(1+),已知质量×所求质量对应分率=所求质量;
第四个空,根据较小数+差=较大数,直接相加即可。
【详解】60×=36(千克)
12÷40%=12÷0.4=30(千克)
6×(1+)
=6×
=9(吨)
6+=(吨)
60千克的是36千克,30千克的40%是12千克,比6吨多是9吨,比6吨多吨是吨。
【点睛】关键是确定单位“1”,理解分数乘除法的意义,百分数可以看成特殊的分数进行分析。
14.(23-24六年级上·江苏徐州·期末)为了绿化城市,楚河沿岸要栽种一批树苗,这批树苗的成活率为80%~90%,如果要确保栽成活720棵,至少要栽种( )棵树苗。
【答案】900
【分析】将要栽种的树苗总棵数看作单位“1”,要确保栽成活720棵,按成活率最低80%进行计算,确保成活棵数÷成活率=要栽种的树苗总棵数,据此列式计算。
【详解】720÷80%=720÷0.8=900(棵)
至少要栽种900棵树苗。
15.(22-23六年级上·江苏常州·期末)男生人数是女生人数的,则女生与男生人数的比是( ),男生约占总人数的( )%(百分号前面保留一位小数)。
【答案】 6∶5 45.5
【分析】男生人数是女生人数的,女生人数是单位“1”,根据比的意义,写出女生与男生对应分率的比,化简即可;男生对应份数÷总份数=男生占总人数的百分之几,据此列式计算。
【详解】1∶=6∶5
5÷(5+6)
=5÷11
≈0.455
=45.5%
女生与男生人数的比是6∶5,男生约占总人数的45.5%。
【点睛】关键是确定单位“1”,理解比的意义,求一个数占另一个数的百分之几用除法。
16.(22-23六年级上·江苏常州·期末)比30分米长是( )分米,0.4吨比0.5吨少( )%,203平方米比( )平方米少30%。
【答案】 35 20 290
【分析】(1)求比30分米长是多少分米,把30分米看作单位“1”,要求的长度是30分米的(1+),单位“1”已知,用乘法计算;
(2)求0.4吨比0.5吨少百分之几,先用减法求出少的吨数,再除以0.5即可;
(3)求203平方米比多少平方米少30%,把要求的面积看作单位“1”,则203平方米是它的(1-30%),单位“1”未知,用除法计算。
【详解】(1)30×(1+)
=30×
=35(分米)
比30分米长是35分米;
(2)(0.5-0.4)÷0.5×100%
=0.1÷0.5×100%
=0.2×100%
=20%
0.4吨比0.5吨少20%。
(3)203÷(1-30%)
=203÷0.7
=290(平方米)
203平方米比290平方米少30%。
【点睛】本题考查分数、百分数乘除法的应用,找出单位“1”,单位“1”已知,根据分数(百分数)乘法的意义解答;单位“1”未知,根据分数(百分数)除法的意义解答。
17.(22-23六年级上·江苏常州·期末)元旦期间,美丽服装店的一件羽绒服的售价是1000元,比原价便宜了250元,这件大衣打( )折出售。照这个优惠力度,一件原价1500元的大衣,现在售价( )元。
【答案】 八 1200
【分析】根据题意可知,原价是(1000+250)元,根据求一个数占另一个数的百分之几,用一个数除以另一个数再乘100%,则用1000÷(1000+250)×100%即可求出现价是原价的百分之几,几折表示百分之几十;根据百分数乘法的意义,用1500元×现价占原价的百分率,即可求出大衣的售价。
【详解】1000÷(1000+250)×100%
=1000÷1250×100%
=80%
80%=八折
1500×80%=1200(元)
这件大衣打八折出售;现在售价1200元。
【点睛】本题主要考查了百分数的应用,明确求一个数占另一个数的百分之几,用除法计算以及求一个数的百分之几是多少,用乘法计算。
18.(22-23六年级上·江苏常州·期末)一件商品,如果卖100元,可赚25%,这件商品进价( )元;如果卖120元,可赚( )%。
【答案】 80 50
【分析】将进价看作单位“1”,赚25%,卖价是进价的(1+25%),卖价÷对应百分率=进价;卖价和进价的差÷进价=赚百分之几,据此列式计算。
【详解】100÷(1+25%)
=100÷1.25
=80(元)
(120-80)÷80
=40÷80
=0.5
=50%
一件商品,如果卖100元,可赚25%,这件商品进价80元;如果卖120元,可赚50%。
【点睛】关键是确定单位“1”,部分数量÷对应百分率=整体数量,差÷较小数=多百分之几。
19.(22-23六年级上·江苏宿迁·期末)比100米多20%是( )米,75千克比( )千克多25%。比2.5升多升是( )升,9米比5米多( )%。
【答案】 120 60 2.7// 80
【分析】将100米看作单位“1”,这是个是100米的1+20%,单位“1”已知,用乘法,将其乘(1+20%),求出第一空;
单位“1”未知,75千克相当于这个数的1+25%,用75千克除以(1+25%),求出第二空;
用2.5升加上升,求出第三空;
将9米和5米的差除以5米,求出第四空。
【详解】100×(1+20%)
=100×120%
=120(米)
75÷(1+25%)
=75÷125%
=60(千克)
2.5+=2.7(升)
(9-5)÷5
=4÷5
=80%
所以,比100米多20%是120米,75千克比60千克多25%。比2.5升多升是2.7升,9米比5米多80%。
【点睛】本题考查了含百分数的运算、分数加法,有一定运算能力是解题的关键。
20.(22-23六年级上·江苏宿迁·期末)花生的出油率是40%,160千克花生能榨油( )千克;要榨160千克油需花生( )千克。
【答案】 64 400
【分析】出油率40%是指榨出油的质量占花生的质量的40%,把花生的质量看成单位“1”,用花生的质量160千克乘上40%即可得出榨出油的质量;榨出油的质量160千克除以出油率40%即可得出需要花生的质量。据此解答。
【详解】160×40%=64(千克)
160÷40%=160÷0.4=400(千克)
160千克花生能榨油(64)千克;要榨160千克油(400)千克。
【点睛】解决本题关键是理解出油率,根据出油率的意义找出单位“1”,再根据分数乘除法的意义进行求解。
21.(22-23六年级上·江苏宿迁·期末)王叔叔将10000元存入银行,定期三年,年利率是2.75%。到期时,他从银行取回( )元。
【答案】10825
【分析】利息=本金×利率×存期,据此先列式求出能取回的利息,再将其加上本金,即可求出到期后王叔叔能从银行取回多少元。
【详解】10000×2.75%×3+10000
=825+10000
=10825(元)
所以,到期时他从银行能取回10825元。
【点睛】本题考查了利率问题,掌握利息的求法是解题的关键。
22.(22-23六年级上·江苏宿迁·期末)妈妈用560元买一件羽绒服,比原价优惠了20%,相当于打( )折买的,这件羽绒服原价( )元。
【答案】 八 700
【分析】将原价看作单位“1”,比原价优惠了20%,是原价的(1-20%),根据几折就是百分之几十确定折数;现价÷折扣=原价,据此列式计算。
【详解】1-20%=80%=八折
560÷80%=560÷0.8=700(元)
妈妈用560元买一件羽绒服,比原价优惠了20%,相当于打八折买的,这件羽绒服原价700元。
【点睛】关键是确定单位“1”,理解折扣的意义。
23.(23-24六年级上·江苏盐城·期末)六(1)班学生数在40~50人之间,男生人数是女生人数的,则男生有( )人,女生有( )人,女生是男生的( )%。
【答案】 20 25 125
【分析】男生人数是女生人数的,把男生看成4份,女生看成5份,总人数就是4+5=9份,然后找到在40~50之间9的倍数,就是总人数,那么男生人数=总人数×,女生人数=总人数-男生人数,女生人数是男生人数的百分之几=女生人数÷男生人数×100%。
【详解】4+5=9,9的倍数有:9、18、27、36、45、54、63…,所以六(1)班有45人;
45×=20(人)
45-20=25(人)
25÷20×100%=125%
所以男生有20人,女生有25人,女生是男生的125%。
24.(22-23六年级上·江苏镇江·期末)建筑工地要运进一批水泥,已经运了30%,还剩56吨没有运,这批水泥有( )吨。
【答案】80
【分析】将这批水泥看作单位“1”,用单位“1”减去已经运了30%,求出剩下的是这批水泥的百分之几。单位“1”未知,用剩下的56吨除以对应的百分率,求出这批水泥有多少吨。
【详解】56÷(1-30%)
=56÷70%
=80(吨)
所以,这批水泥有80吨。
【点睛】本题考查了含百分数的运算,已知一个数的百分之几是多少,求这个数用除法。
25.(22-23六年级上·江苏淮安·期末)公鸡和母鸡只数比是8∶5,则母鸡的只数是公鸡的( )%,母鸡的只数比公鸡少。
【答案】62.5;
【分析】已知公鸡和母鸡只数比是8∶5,可以把公鸡的只数看作8份,则母鸡的只数看作5份;
求母鸡的只数是公鸡的百分之几,用母鸡的份数除以公鸡的份数即可;
求母鸡的只数比公鸡少几分之几,先用减法求出少的份数,再除以公鸡的份数。
【详解】5÷8×100%
=0.625×100%
=62.5%
(8-5)÷8
=3÷8

母鸡的只数是公鸡的62.5%,母鸡的只数比公鸡少。
【点睛】本题考查比的意义及百分数、分数的实际应用,把比看作份数,明确求一个数是另一个数的百分之几,用除法计算;求一个数比另一个数多或少几分之几,用两数的差值除以另一个数。
26.(22-23六年级上·江苏淮安·期末)一种洗衣液采用“买四送一”的方法促销,即:买4瓶,另外免费赠送一瓶同样的洗衣液。这种洗衣液促销期间的实际售价是原定价的( )%;如果采用“买三送二”的方式促销,是打( )折。
【答案】 80 六
【分析】根据题意可知,买四送一即为五瓶,所以用4除以5乘上100%,即可算出答案;用买三送二即为五瓶,所以用3除以5乘上100%,即可算出答案。
【详解】4÷(4+1)×100%
=4÷5×100%
=0.8×100%
=80%
3÷(3+2)×100%
=3÷5×100%
=0.6×100%
=60%
60%=六折
这种洗衣液促销期间的实际售价是原定价的60%,如果采用“买三送二”的方式促销,是打六折。
【点睛】此题考查了百分数的应用。要求熟练掌握并灵活运用。
27.(22-23六年级上·江苏苏州·期末)“双十一”期间,《儿童百问》套装书打三折出售,方芳买这套书花了120元,那么《儿童百问》套装书的原价是( )元,便宜了( )%。
【答案】 400 70
【分析】三折就是现价是原价的30%,把原价看作单位“1”,现价是原价的30%,对应的是120元,求原价,根据对应量÷对应百分率=单位“1”,用现价120÷30%解答;再用1-30%,即可求出便宜了百分之几十,据此解答。
【详解】120÷30%=400(元)
1-30%=70%
“双十一”期间,《儿童百问》套装书打三折出售,方芳买这套书花了120元,那么《儿童百问》套装书的原价是400元,便宜了70%。
28.(22-23六年级上·江苏扬州·期末)小亮用200粒黄豆做发芽试验,7天后,发芽率是85%,说明( )的粒数占总粒数的85%,未发芽的粒数占总粒数的( )。
【答案】 发芽 15%
【分析】把黄豆的总粒数看作单位“1”,发芽率表示发芽的粒数占总粒数的百分之几,85%表示发芽的粒数占总粒数的85%,用1-85%即可求出未发芽的粒数占总粒数的百分之几。
【详解】1-85%=15%
小亮用200粒黄豆做发芽试验,7天后,发芽率是85%,说明发芽的粒数占总粒数的85%,未发芽的粒数占总粒数的15%。
29.(22-23六年级上·江苏扬州·期末)支付宝推出一项贷款业务,日利率为0.05%(借100元每天还利息0.05元)。张小宁急需用钱从支付宝中借了4万元,共借了10天。他一共要还利息( )元。
【答案】200
【分析】根据关系式:利息=借款本金×日利率×天数,用40000×0.05%×10即可求出张小宁需要还的利息。
【详解】40000×0.05%×10=200(元)
一共要还利息200元。
30.(22-23六年级上·江苏扬州·期末)下面是某小学六(1)班同学体质健康测试成绩统计表。请根据以下条件,先计算,再把表格填写完整。
(1)这个班体质健康测试的及格率是95%。
(2)成绩优秀的人数与全班总人数的比为7∶20。
(3)成绩良好的人数比优秀的人数多。
六(1)班同学体质健康测试成绩统计表:
成绩 合计 优秀 良好 及格 不及格
人数 2
【答案】见详解
【分析】根据(1)可知,把全班人数看作单位“1”,及格率是95%,不及格率是(1-95%),对应的是2人,求单位“1”,用2÷(1-95%),求出全班人数;
根据(2)可知,成绩优秀的人数与全班总人数的比为7∶20,即成绩优秀的人数占全班总人数的,用全班总人数×,求出成绩优秀的人数;
根据(3)可知,把优秀的人数看作单位“1”,良好的人数是优秀人数的(1+),用优秀的人数×(1+),求出良好的人数,再用全班人数-成绩优秀人数-良好人数-不及格人数,即可求出及格人数,完成表格。
【详解】2÷(1-95%)
=2÷5%
=40(人)
40×=14(人)
14×(1+)
=14×
=18(人)
40-14-18-2
=26-18-2
=8-2
=6(人)
六(1)班同学体质健康测试成绩统计表:
成绩 合计 优秀 良好 及格 不及格
人数 40 14 18 6 2
31.(22-23六年级上·江苏徐州·期末)两人共同投资100万元加工产品。其中王叔叔投资了40万元,李叔叔投资了60万元。去年可分配的利润是20万元,按投资额分配,王叔叔应该分得利润( )万元。如果王叔叔把自己分得的利润存入银行,定期两年,年利率是3.75%,到期王叔叔可获得利息( )元。
【答案】 8 6000
【分析】王叔叔占投资份额的40÷100=,李叔叔占投资份额的60÷100=,则分配利润王叔叔应分得20万元的;利息=本金×利率×存期,代入数据计算即可。
【详解】40÷100=
20×=8(万)
8×3.75%×2
=8×0.0375×2
=0.3×2
=0.6(万)
=0.6×10000
=6000(元)
王叔叔应分得利润8万元,到期王叔叔可获取利息6000元。
32.(22-23六年级上·江苏南京·期末)小力在“小小科学家”活动中进行植物种子出油试验,试验结果如下表。
种类 质量/g 出油质量/g
花生仁 500 200
芝麻 400 180
油菜籽 100 38
(1)花生仁的出油率是( )。
(2)若用2000克油菜籽,则可以榨菜籽油( )克。若要榨720克芝麻油,则需要( )克芝麻。
【答案】(1)40%
(2) 760 1600
【分析】(1)根据出油率=出油质量÷总质量×100%,求出花生的出油率;
(2)先根据出油率=出油质量÷总质量×100%求出油菜籽的出油率,再用出油质量=总质量×出油率求解;根据出油率=出油质量÷总质量×100%求出芝麻的出油率,再用总质量=出油质量÷出油率求出需要的芝麻的质量。
【详解】(1)(1)200÷500×100%
=0.4×100%
=40%
所以花生仁的出油率是40%。
(2)38÷100×100%×2000
=0.38×100%×2000
=38%×2000
=760(克)
180÷400×100%
=0.45×100%
=45%
720÷45%=1600(克)
若用2000克油菜籽,则可以榨菜籽油760克,若要榨720克芝麻油,则需要1600克芝麻。
33.(22-23六年级上·江苏泰州·期末)陈老师给报社投稿,获得稿费2800元。按照规定,超过800元的部分应缴纳5%的个人所得税,他实际可拿到( )元。
【答案】2700
【分析】应纳税额=应纳税所得额×税率,先用2800元减去800元求出应纳税所得额;再用应纳税所得额乘5%求出应纳税额;最后用2800元减去应纳税额,即可求出他实际可拿到的钱数。
【详解】2800-(2800-800)×5%
=2800-2000×5%
=2800-100
=2700(元)
所以他实际可拿到2700元。
【点睛】求应纳税额,相当于求一个数的百分之几是多少。
34.(23-24六年级上·江苏扬州·期末)中国代表团在2022年北京冬奥会上获得9枚金牌、4枚银牌、2枚铜牌。中国代表团获得金牌数是获得奖牌总数的( )%。
【答案】60
【分析】根据求一个数占另一个数的百分之几,用一个数除以另一个数再乘100%,则用9÷(9+4+2)×100%即可求出中国代表团获得金牌数是获得奖牌总数的百分之几。
【详解】9÷(9+4+2)×100%
=9÷15×100%
=60%
中国代表团获得金牌数是获得奖牌总数的60%。
35.(23-24六年级上·江苏扬州·期末)瘦西湖景区门票是120元,10人以上打七五折,两位老师带40名学生去游玩,一共需要付( )元。
【答案】3780
【分析】老师人数+学生人数=总人数,门票钱数×总人数=应付钱数,将应付钱数看作单位“1”,几折就是百分之几十,应付钱数×折扣=实际付的钱数,据此列式计算。
【详解】120×(2+40)×75%
=120×42×0.75
=5040×0.75
=3780(元)
一共需要付3780元。
36.(23-24六年级上·江苏扬州·期末)吨小麦可以磨面粉吨,这种小麦的出粉率是( ),照这样计算,( )吨小麦可以磨出2吨面粉。
【答案】 80% 2.5
【分析】出粉率=磨面粉的重量÷小麦的重量×100%,代入数据,即可求出出粉率;再根据小麦的重量=磨面粉的重量÷出粉率,用2÷出粉率,即可求出磨出2吨面粉需要小麦的重量,据此解答。
【详解】÷×100%
=××100
=0.8×100%
=80%
2÷80%=2.5(吨)
吨小麦可以磨面粉吨,这种小麦的出粉率是80%,照这样计算,2.5吨小麦可以磨出2吨面粉。
37.(23-24六年级上·江苏盐城·期末)绿化队植树,先栽了20棵,有4棵没有成活,这时,树苗的成活率是( )%,后来又补种了4棵,全部成活,这时树苗的成活率是( )%。
【答案】 80 83.3
【分析】根据成活率=成活棵数÷总棵数×100%,列式计算即可。
【详解】(20-4)÷20×100%
=16÷20×100%
=0.8×100%
=80%
(20-4+4)÷(20+4)×100%
=20÷24×100%
≈0.833
=83.3%
绿化队植树,先栽了20棵,有4棵没有成活,这时,树苗的成活率是80%,后来又补种了4棵,全部成活,这时树苗的成活率是83.3%。
38.(23-24六年级上·江苏盐城·期末)( )米比120米多,千米是( )千米的,72千克减少千克是( )千克,35吨的( )%是7吨,10千克比80千克轻( )%。
【答案】 144 /0.625 20 87.5
【分析】第一个空,已知米数是单位“1”,所求米数是已知米数的(1+),已知米数×所求米数对应分率=所求米数;
第二个空,所求千米数是单位“1”,已知千米数÷对应分率=所求千米数;
第三个空,比一个数少几就减几,根据较大数-差=较小数,列式计算;
第四个空,已知吨数是单位“1”,用7吨÷35吨,求出7吨是35吨的百分之几即可。
第五个空,80千克是单位“1”,根据差÷较大数=少百分之几,10千克与80千克的质量差÷80千克=10千克比80千克轻百分之几。
【详解】120×(1+)
=120×
=144(米)
÷=×=(千米)
72-=(千克)
7÷35=0.2=20%
(80-10)÷80
=70÷80
=0.875
=87.5%
144米比120米多,千米是千米的,72千克减少千克是千克,35吨的20%是7吨,10千克比80千克轻87.5%。
39.(23-24六年级上·江苏扬州·期末)王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息( )元。
【答案】8670.83
【分析】
根据应缴税部分×税率=应交税款,代入数据,求出应缴税款;再用收入-应缴税款,求出实际收入;根据利息公式:利息=本金×利率×时间,代入数据,求出到期的利息,再加上本金,即可解答。
【详解】9000×(1-11%)
=9000×89%
=8010(元)
8010×2.75%×3
=220.275×3
≈660.83
8010+660.83=8670.83(元)
王老师编写一本《成语故事》,稿费9000元,扣除11%的个人所得税后,她把钱存入银行,定期3年,年利率2.75%。到期后,王老师取回本息8670.83元。
40.(22-23六年级上·江苏南通·期末)一种商品定价30元,售出后可获利50%,这种商品成本价( )元。如果按定价的七五折售出,可获利( )元。如果开始按成本价提高20%出售,后来因为市场原因,打八折出售,现在售价( )元。
【答案】 20 2.5 19.2
【分析】(1)根据题意,一种商品以定价30元售出后可获利50%,即定价比成本价高50%,把这件商品的成本价看作单位“1”,则定价是成本价的(1+50%),单位“1”未知,用定价除以(1+50%),即可求出这件商品成本价。
(2)如果按定价的七五折售出,即售价是定价的75%,把定价看作单位“1”,单位“1”已知,用定价乘75%,即可求出售价;再用售价减去成本价,即是获利。
(3)如果开始按成本价提高20%出售,先把成本价看作单位“1”,则开始的售价是成本价的(1+20%),单位“1”已知,用成本价乘(1+20%),即可求出开始的售价;
后来因为市场原因,打八折出售,再把开始的售价看作单位“1”,现在的售价是开始售价的80%,单位“1”已知,用开始的售价乘80%,即可求出现在的售价。
【详解】(1)30÷(1+50%)
=30÷1.5
=20(元)
这种商品成本价20元。
(2)30×75%
=30×0.75
=22.5(元)
22.5-20=2.5(元)
可获利2.5元。
(3)20×(1+20%)×80%
=20×1.2×0.8
=24×0.8
=19.2(元)
现在售价19.2元。
【点睛】本题考查折扣问题,理解成本价、定价、售价、折扣、获利之间的关系;找出单位“1”,单位“1”已知,根据百分数乘法的意义解答;单位“1”未知,根据百分数除法的意义解答。
21世纪教育网(www.21cnjy.com)