13.3.3 《等腰三角形复习》

文档属性

名称 13.3.3 《等腰三角形复习》
格式 zip
文件大小 12.3MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2024-11-15 11:20:40

文档简介

【注意】字体安装之后
必须要重启PPT,字体
(适用于字体种类较少的情况) 才能显示出来。
找到压缩包中 鼠标左键双击 双击后,选择左上角的“安装”
的字体文件夹 字体文件
【注意】字体安装之后
也必须重启PPT。
(适用于字体种类较多的情况)
找到压缩包中 打开后有较多字体安装包,Ctrl+A全选 将字体文件包粘贴到:C盘 >
的字体文件夹 windows文件夹 > fonts文件夹
(Mac系统的安装与windows系统类似,仅提供路径)
找到压缩包中的字体文件夹 应用窗口中打开“字体册”
鼠标左键双击字体文件 界面左上方点击“+”
双击后,选择左上角的“安装” 选中要安装的字体,点击“打开”
【注意】Mac系统与Windows系统一样,都需要重启PPT,字体才能显示出来。
“明明自己电脑上安装成功了,播放也正常的,但拿去教室
电脑上播放,字体又变得乱七八糟!”
老师们自己电脑上安装成功了,代表安装在自己电脑上的C盘
(一般情况下),但如果教室电脑上没有安装过PPT内所用的
特殊字体,在打开PPT时,会出现字体不一或缺失的情况。
把字体文件复制粘贴到教室电脑上的 C盘> windows > fonts文件夹里即可。
在教室电脑上找到压 打开后框选中字体 将字体文件包粘贴到:C盘 >
缩包中的字体文件夹 包,Ctrl+C复制 windows文件夹 > fonts文件夹
【注意】转图片后,图
片会自动对齐页面正中
在自己的电脑上将有特殊字体的可编辑文字转化成图片即可。 心,需自己移动到原位
选中含有特殊字体的可编 Ctrl+V粘贴,点击右下角 点击“粘贴选项” 下右边
辑文字框,Ctrl+X剪切 图标 的图标,选择粘贴为图片
“下载了字体,安装也成功了,电脑也重启了,但PPT内却
找不到这款字体了?!”
一般这种情况出现在有多种字重的情况(例:阿里巴巴普惠
体),部分字体隐藏了。字重:可以理解为改款字体的不同粗细呈现
最直接的方法是 完毕后,
打开PPT,直接搜索字体+字重。
前提是确保完成一下操作:①字体安装后重启PPT; ②把这款字体整个系列(全部字重)都已下载(共35张PPT)
授课人:XXX
第13章 轴对称
初中数学
小结复习
等腰三角形
1
2
学习目标
熟练应用等边三角形的性质及判定定理,会应用性质和判定解决问题.
巩固等腰三角形的性质及判定定理,会应用性质和判定解决问题;
2
知识导入
在回顾等腰三角形的时候,三位同学争论起来了,你能给他们评评理吗?
等腰三角形是轴对称图形,对称轴是底边上的高
哼……对称轴是底边上的中线所在的直线
哼哼……对称轴是顶角的角平分线所在的直线



2
知识回顾
有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底边,两腰的夹角叫做顶角,底边与腰的夹角叫做底角.
在等腰三角形中,若,则:
①、为等腰三角形的两腰;
②为等腰三角形的底边;
③为等腰三角形的顶角;
④、为等腰三角形的底角.
A
B
C
等腰三角形的概念:
2
例题精讲
等腰三角形的两边长分别为3和6,则这个三角形的周长是(  )
由题意可得,①若3为腰长,6为底边长,
由于3+3=6,则三角形不存在;
②若6为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为6+6+3=15.
15
B. 12
C. 12或15
D. 9
解析
A
等腰三角形有两条边长分别为5和10,则这个等腰三角形的周长为(   )
2
跟踪练习
15
B. 20
C. 25或20
D. 25
解析
D
当等腰三角形的腰为5时,三边为5,5,10,5+5=10,三边关系不成立;
当等腰三角形的腰为10时,三边为5,10,10,三边关系成立,周长为5+10+10=25.
2
知识回顾
2
等腰三角形的两个底角相等(简称“等边对等角”).
等腰三角形的性质一
2
例题精讲
若等腰三角形中有一个角为50度,则这个等腰三角形的顶角的度数为(  )
①50°是底角,则顶角为:180°-50°×2=80°;
②50°为顶角;所以顶角的度数为50°或80°.
50°
B. 80°
C. 65°或50°
D. 50°或80°
解析
D
2
跟踪练习
已知等腰三角形的顶角是40°,则它的一个底角的度数是(  )
解析
40°
B. 50°
C. 70°
D. 100°
∵等腰三角形的顶角是40°,
∴它的一个底角的度数为:1/2(180°-40°)=70°.
C
2
知识回顾
2
等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合.(等腰三角形“三线合一”)
等腰三角形的性质二
2
例题精讲
如图,在中,,是的平分线,若,则等于(   )
3
B. 4
C. 5
D. 6
C
2
跟踪练习
如图,在中,,是的中线,点在上,且,连接,若,则的度数为 .
∵,是的中线,
∴,,即,

∵,

.
解析
50°
A
E
B
D
C
2
知识回顾
2
有两条边相等的三角形叫做等腰三角形.
等腰三角形的判定一
2
例题精讲
如图,在正方形网格中,,两点都 在小方格的顶点上,如果点也是图中小方格的顶点,且是等腰三角形,那么点的个数为(   )
解析
C
A. 1
B. 2
C. 3
D. 4
当为腰时,点的个数有2个;
当为底时,点的个数有1个,
A
B
2
跟踪练习
如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是(   )
A. 6个
B. 7个
C. 8个
D. 9个
如图,分情况讨论:
①为等腰△ABC的底边时,符合条件的点有4个;
②为等腰其中的一条腰时,符合条件的点有4个.
解析
A
B
C
2
知识回顾
2
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).
等腰三角形的判定二
2
例题精讲
已知:如图,是外角的平分线,且.求证:是等腰三角形.
∵,
,,
∵是外角的平分线,


∴,即是等腰三角形.
证明
A
B
C
E
D
2
跟踪练习
证明
如图,在中,,是斜边上的高,角平分线交于点.求证:是等腰三角形;




是等腰三角形.
∵平分,

,,
,,
B
E
A
D
C
M
2
知识回顾
2
三条边都相等的三角形,叫做等边三角形.
等腰三角形的定义
2
已知等边三角形,,则其周长为(   )
例题精讲
C
解析
∵是等边三角形,,
∴,
∴的周长是:,
A.4
B. 5
C. 6
D. 8
2
跟踪练习
2
2
已知等边三角形的周长为24cm,则等边三角形
的边长为 cm.
8
2
知识回顾
2
等边三角形的三个内角都相等,并且每一个角都等于60°.
等边三角形性质一
如图,是等边三角形,,,则的度数为(   )
2
例题精讲
A
解析
∵是等边三角形,


∵,


A.50°
B. 45°
C. 40°
D. 35°
D
B
A
C
E
如图,直线,等边的顶点在直线上,若,则的度数为(  )
2
跟踪练习
C
解析
设直线与交于点,与交于点,如图所示.
,,
∵为等边三角形,,
∵为的一个外角,

∵直线,

A.142°
B. 128°
C. 98°
D. 92°
A
a
C
b
B
1
2
2
知识回顾
2
等边三角形每条边都具有“三线合一”的性质.
等边三角形性质二
∵是等边三角形,是边上的高,
∴,
∵,∴,

,∴,
∵,
∴.
如图,在等边中,,是边上的高,点在的延长线上,,则的长为(   )
2
例题精讲
A.4.5
B. 5
C. 6
D. 9
C
解析
A
C
B
E
如图所示,是等边三角形,为角平分线,为上一点,且,则等于(   )
2
跟踪练习
A
解析
A.15°
B. 20°
C. 25°
D. 30°
∵为等边三角形,

∵是等边三角形的角平分线,
,,
∵,,



A
C
D
B
E
2
知识回顾
2
三个角都相等的三角形是等边三角形
等边三角形的判定一
2
例题精讲
证明
如图,在中,为延长线上的一点,,.求证:是等边三角形.





∴是等边三角形.
A
B
C
D
2
跟踪练习
证明
如图,在中,是中线,使,若,.求证:是等边三角形.
∵,

∵,



∵是中线,∴,


∴是等边三角形.
A
B
C
E
D
2
知识回顾
2
有一个角是60°的等腰三角形是等边三角形.
等边三角形的判定二
2
例题精讲
证明
如图,中,,延长至点,过点作,,连接.求证:是等边三角形.
∵,


∴.
∴是等腰三角形.
又,
∴是等边三角形.
A
D
C
B
E
2
跟踪练习
证明
已知如图,,点是的中点,平分,,垂足为.且.求证:是等边三角形.
∵,点是的中点,
∴,,
∵平分,


∵,



∴是等边三角形.
A
E
B
D
C
2
课堂小结
性质
判定
有两条边相等的三角形叫做等腰三角形
等腰三角形的两个底角相等(简称“等边对等角”)
等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合.
(等腰三角形“三线合一”)
有两条边相等的三角形叫做等腰三角形.
如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).
定义
等腰三角形
2
课堂小结
三条边都相等的三角形,叫做等边三角形.
等边三角形的三个内角都相等,并且每一个角都等于60°.
等边三角形每条边都具有“三线合一”的性质.
三个角都相等的三角形是等边三角形.
有一个角是60°的等腰三角形是等边三角形.
等边三角形
性质
判定
定义