2025届高考物理一轮复习知识清单:恒定电流

文档属性

名称 2025届高考物理一轮复习知识清单:恒定电流
格式 docx
文件大小 1.2MB
资源类型 教案
版本资源 人教版(2019)
科目 物理
更新时间 2024-11-25 13:29:49

图片预览

文档简介

第九章 恒定电流
一、电流的三种表达式及其比较
公式 适用范围 字母含义 公式含义
I= 一切电路 q为时间t内通过导体横截面的电荷量 反映了I的大小,但不能说I∝q、I∝
I=nqSv 一切电路 n:导体单位体积内的自由电荷数 q:每个自由电荷的电荷量 S:导体横截面积 v:电荷定向移动速率 从微观上看n、q、S、v决定了I的大小
I= 金属、电解液 U:导体两端的电压 R:导体本身的电阻 I由U、R决定,I∝U、I∝
(1)电流形成的条件:导体中有自由电荷;导体两端存在电压.
(2)电流的标矢性:电流是标量,但有方向,正电荷定向移动的方向规定为电流的方向.
二、部分电路欧姆定律
1.表达式:I=.
2.图像
(1)交点表示电阻相等,功率相同 (2)横坐标和纵坐标之比是电阻R(斜率的倒数) (3)坐标点的横纵坐标的乘积表示功率 (4)非线性元件的图线切线斜率不等于电阻的倒数,
三、电阻定律
1.公式:R=ρ.
2.电阻率:反映导体的导电性能,只与材料和温度有关,多数金属的电阻率随温度升高而增大(半导体相反)
3.电阻的决定式和定义式的区别
公式 R=ρ R=
区别 电阻的决定式 电阻的定义式
说明了电阻的决定因素 提供了一种测电阻的方法,并不说明电阻与U和I有关
只适用于粗细均匀的金属导体和浓度均匀的电解质溶液 适用于任何纯电阻导体
四、串、并联电路的特点
串联电路 并联电路
电流 I=I1=I2=…=In I=I1+I2+…+In
电压 U=U1+U2+…+Un U=U1=U2=…=Un
电阻 R=R1+R2+…Rn =++…+
功率 分配 ==…= P1R1=P2R2=… =PnRn
P总=P1+P2+…+Pn
串、并联电路总电阻的比较
串联电路的总电阻R总 并联电路的总电阻R总
不 同 点 n个相同电阻R串联,总电阻R总=nR n个相同电阻R并联,总电阻R总=
R总大于任一电阻阻值 R总小于任一电阻阻值
一个大电阻和一个小电阻串联时,总电阻接近大电阻 一个大电阻和一个小电阻并联时,总电阻接近小电阻
相同点 多个电阻无论串联还是并联,其中任一电阻增大或减小,总电阻也随之增大或减小
五、电功、电功率 电热、热功率
1、公式:W=qU=IUt(适用于任何电路).
2、公式:P==IU(适用于任何电路).在非纯电阻电路中,P=UI=I2R+P其他
3、公式:Q=I2Rt(适用于任何电路).
4、热功率P=I2R
六、闭合电路的欧姆定律
1.电动势(E)
(1)非静电力所做的功与所移动的电荷量的比叫电动势.
(2)物理含义:电动势表示电源把其他形式的能转化成电势能本领的大小,在数值上等于电源没有接入电路时两极间的电压.
2.闭合电路欧姆定律
(1)公式:I=(只适用于纯电阻电路);
(2)其他表达形式:E=U外+U内或E=U外+Ir(适用于任意电路).
3.路端电压与外电阻的关系
(1)纯电阻电路:U=IR=·R=,当R增大时,U增大;
(2)特殊情况:
①当外电路断路时,I=0,U=E;
②当外电路短路时,I短=,U=0.
4.动态分析常用方法
(1)程序法
(2)结论法:“串反并同”
5.电路故障检测方法
(1).电压表检测:如果电压表示数为零,则说明可能在并联路段之外有断路,或并联部分短路;
(2).电流表检测:当电路中接有电源时,可用电流表测量各部分电路上的电流,通过对电流值的分析,可以确定故障的位置.在运用电流表检测时,一定要注意电流表的极性和量程;
(3).欧姆表检测:当测量值很大时,表示该处断路;当测量值很小或为零时,表示该处短路.在用欧姆表检测时,应断开电源.
七、闭合电路的功率及效率问题
1.电源的总功率
(1)任意电路:P总=IE=IU外+IU内=P出+P内.
(2)纯电阻电路:P总=I2(R+r)=.
2.电源内部消耗的功率:P内=I2r=IU内=P总-P出.
3.电源的输出功率
(1)任意电路:P出=IU=IE-I2r=P总-P内.
(2)纯电阻电路:P出=I2R=.
(3)纯电阻电路中电源的最大输出功率(如图)
P出=UI=I2R=R==
当R=r时,电源的输出功率最大为Pm=.
推论:
4.电源的效率
(1)任意电路:η=×100%=×100%
(2)纯电阻电路:η=×100%
(3)提高纯电阻电路效率的方法
η=×100%=×100%=×100%,R增大,η越高.
等效电源
把含有电源、电阻的部分电路等效为新的“电源”,其“电动势”“内阻”如下:
(1)两点间断路时的电压等效为电动势E′.
(2)两点短路时的电流为等效短路电流I短′,等效内电阻r′=.
常见电路等效电源如下:
八、两类U-I图像的比较
电源的U-I图像 电阻的U-I图像
图像表述的物理量的关系 电源的路端电压与电路电流的关系 电阻两端电压与流过电阻的电流的关系
图线与坐标轴交点 ①与纵轴交点表示电源电动势E ②与横轴交点表示电源短路电流 过坐标轴原点,表示没有电压时电流为零
图线的斜率 -r(r为内阻) 表示电阻大小(电阻为纯电阻时)
图线上每一点坐标的乘积UI 表示电源的输出功率 表示电阻消耗的功率
图线上每一点坐标比值 表示外电阻的大小,不同点对应的外电阻大小不同 每一点对应的比值均表示此电阻的阻值大小
含容电路的分析
1.电路简化
把电容器所在的支路稳定时视为断路,简化电路时可以去掉,求电荷量时再在相应位置补上.
2.电容器的电压
(1)电容器所在的支路中没有电流,与之串联的电阻两端无电压,相当于导线.
(2)电容器两端的电压等于与之并联的电阻两端的电压.
3.电容器的电荷量及变化
(1)电路中电流、电压的变化可能会引起电容器的充、放电.若电容器两端电压升高,电容器将充电;若电压降低,电容器将通过与它连接的电路放电.
(2)如果变化前后极板带电的电性相同,通过所连导线的电荷量为|Q1-Q2|;
(3)如果变化前后极板带电的电性相反,通过所连导线的电荷量为Q1+Q2.
十、【实验 导体电阻率的测量】
1.实验原理(如图所示)
由R=ρ得ρ==,因此,只要测出金属丝的长度l、直径d和金属丝的电阻R,即可求出金属丝的电阻率ρ.
2.实验器材
被测金属丝,直流电源(4 V),电流表(0~0.6 A),电压表(0~3 V),滑动变阻器(0~50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺.
3.实验过程
(1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d.
(2)连接好用伏安法测电阻的实验电路.
(3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l.
(4)把滑动变阻器的滑片调到最左端.
(5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I和U的值,填入记录表格内.
(6)将测得的R、l、d值,代入公式ρ=中,计算出金属丝的电阻率.
4.求R的平均值时可用两种方法
(1)用R=分别算出各次的数值,再取平均值.
(2)用U-I图线的斜率求出.
5.注意事项
(1)本实验中被测金属丝的电阻值较小,因此实验电路一般采用电流表外接法.
(2)测量被测金属丝的有效长度,是指测量被测金属丝接入电路的两个端点之间的长度,亦即电压表两端点间的被测金属丝长度,测量时应将金属丝拉直,反复测量三次,求其平均值.
(3)测金属丝直径一定要选三个不同部位进行测量,求其平均值.
(4)在用伏安法测电阻时,通过被测金属丝的电流不宜过大(电流表用0~0.6 A量程),通电时间不宜过长,以免金属丝的温度明显升高,造成其电阻率在实验过程中逐渐增大.
(5)若采用图像法求电阻阻值的平均值,在描点时,要尽量使各点间的距离拉大一些,连线时要尽可能地通过较多的点,不在直线上的点均匀分布在直线的两侧,个别明显偏离较远的点应舍去.
6.误差分析
(1)金属丝直径、长度的测量、读数等人为因素带来误差.
(2)测量电路中电流表及电压表对电阻测量的影响,因为电流表外接,所以R测(3)通电电流过大,时间过长,致使金属丝发热,电阻率随之变化带来误差.
十一、【实验 测量电源的电动势和内电阻】
伏安法测电源的电动势和内电阻
1.实验原理
闭合电路欧姆定律.
2.实验器材
干电池、电压表、电流表、滑动变阻器、开关、导线、坐标纸和刻度尺.
3.实验步骤
(1)电流表用0.6 A的量程,电压表用3 V的量程,按图连接好电路.
(2)把滑动变阻器的滑片移到接入电路阻值最大的一端.
(3)闭合开关,调节滑动变阻器,使电流表有明显示数并记录一组数据(I1,U1).用同样的方法再测量几组I、U值,填入表格中.
(4)断开开关,拆除电路,整理好器材.
4.实验数据处理
(1)列方程组,解出E、r,并多次测量求平均值.
(2)用作图法处理数据,如图所示.
①图线与纵轴交点为电源电动势E;
②图线斜率的绝对值为内阻r.
5.误差分析
(1)偶然误差:主要来源于电压表和电流表的读数以及作U-I图像时描点不准确.
(2)系统误差:
外接法(对于电源) 内接法(对于电源)
①方法a 若采用甲图电路,电压表的分流作用造成误差,电压值越大,电压表的分流越多,对应的I真与I测的差越大,IV=.其中U-I图像如图乙所示. 结论:E测r真. 方法b 等效电源法 如图丙所示,E测=E真,r测=r+RA>r真.
(3)电路选择:
①电源内阻一般较小,选图甲电路误差较小.
②当内阻已知时选图丙电路,此时r=k-RA,没有系统误差.
6.注意事项
(1)为了使路端电压变化明显,可使用内阻较大的旧电池.
(2)电流不要过大,应小于0.5 A,读数要快.
(3)要测出不少于6组的(I,U)数据,变化范围要大些.
(4)若U-I图线纵轴刻度不从零开始,则图线和横轴的交点不再是短路电流,内阻应根据r=||确定.
安阻法测电动势和内电阻
1.实验原理
闭合电路的欧姆定律E=IR+Ir,电路图如图所示.
2.实验器材
电池、电流表、电阻箱、开关、导线、坐标纸和刻度尺.
3.数据处理
(1)计算法:由
解方程组求得E,r.
(2)图像法:由E=I(R+r)可得
①=R+,可作-R图像(如图甲)
-R图像的斜率k=,纵轴截距为
②R=E·-r,可作R-图像(如图乙)
R-图像的斜率k=E,纵轴截距为-r.
4.误差分析
(1)误差来源:电流表有电阻,导致内阻测量不准确;
(2)结论:E测=E真,r测>r真(r测=r真+rA).
伏阻法测电动势和内电阻
1.实验原理
闭合电路欧姆定律E=U+r,电路图如图所示.
2.实验器材
电池、电压表、电阻箱、开关、导线、坐标纸和刻度尺.
3.数据处理
(1)计算法:由
解方程组可求得E和r.
(2)图像法:由E=U+r得:=+·.故-图像的斜率k=,纵轴截距为,如图.
4.误差分析
(1)误差来源:电压表有内阻,干路电流表达式不准确,导致电动势测量不准确;
(2)结论:E测<E真,r测<r真.
实验十一 用多用电表测量电学中的物理量
1.认识多用电表
(1)多用电表可以用来测量电流、电压、电阻等,并且每一种测量项目都有几个量程.
(2)外形如图所示:上半部分为表盘,表盘上有电流、电压、电阻等多种量程的刻度;下半部分为选择开关,它的四周刻有各种测量项目和量程.
多用电表面板上还有:欧姆表的欧姆调零旋钮(使电表指针指在右端零欧姆处)、指针定位螺丝(使电表指针指在左端的“0”位置)、表笔的正、负插孔(红表笔插入“+”插孔,黑表笔插入“-”插孔).
2.用多用电表测量小灯泡的电压和电流
按如图甲所示的电路图连好电路,将多用电表选择开关置于直流电压挡,测小灯泡两端的电压.红表笔接电势高的点.
按如图乙所示的电路图连好电路,将选择开关置于直流电流挡,测量通过小灯泡的电流.此时电流从红色表笔流入电表.
3.用多用电表测定值电阻的阻值
(1)原理
电路图
I与Rx的对应关系 相当于待测电阻Rx=0,调节R使I=Ig=,即表头满偏(RΩ=Rg+r+R) 相当于待测电阻Rx=∞,此时I=0,指针不偏转 待测电阻为Rx,I=,指针指到某确定位置
刻度 特点 表头电流满偏Ig处,对应欧姆表零刻度(右侧) 表头电流I=0处,对应欧姆表∞刻度(左侧) 表头电流I与电阻Rx一一对应,但不是线性关系,表盘刻度不均匀
(2)注意:①黑表笔与电源的正极连接,红表笔与电源的负极连接,电流方向为“红进黑出”.
②当多用电表指针指在中央时=,知中值电阻R中=RΩ.
(3)测量步骤
①估测待测电阻阻值.
②欧姆调零.
③将被测电阻接在红黑表笔之间.
④读数:指针示数乘以倍率.
⑤使用完毕:选择开关置于“OFF”挡或交流电压最高挡,长期不用应取出电池.
(4)注意事项
①区分“机械零点”与“欧姆零点”.机械零点是表盘刻度左侧的“0”位置,机械调零对应的是表盘下边中间的指针定位螺丝;欧姆零点是指刻度盘右侧的“0”位置,欧姆调零对应的是欧姆调零旋钮.
②使指针指在中值附近,否则换挡.
③测电阻时每换一次挡必须重新欧姆调零.
④手不能接触表笔的金属杆.
⑤测量电阻时待测电阻要与其他元件和电源断开.
4.用多用电表测二极管的正、反向电阻
(1)认识二极管:晶体二极管由半导体材料制成,它的符号如图所示,左端为正极,右端为负极.
特点:当给二极管加正向电压时电阻很小,当给二极管加反向电压时电阻很大.
(2)用欧姆挡判断二极管的正负极
将多用电表欧姆挡调零之后,若多用电表指针偏角很大,则黑表笔接触二极管的正极,红表笔接触二极管的负极(如图甲);若多用电表指针偏角很小,则黑表笔接触二极管的负极,红表笔接触二极管的正极(如图乙).
5.探索黑箱内的电学元件
判断目的 应用挡位 现象
电源 电压挡 两接线柱正、反接时均无示数,说明无电源
电阻 欧姆挡 两接线柱正、反接时示数相同
二极管 欧姆挡 正接时示数很小,反接时示数很大
实验题总结:
题型一 常用仪器的读数
一、螺旋测微器
1.构造:如图所示,B为固定刻度,E为可动刻度.
2.原理:固定刻度B的螺距为0.5 mm,即旋钮D每旋转一周,测微螺杆F前进或后退0.5 mm,而可动刻度E上有50个等分刻度,每转动一小格,F前进或后退0.01 mm,即螺旋测微器的精确度为0.01 mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺.
3.读数:测量值(mm)=固定刻度数(mm)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×0.01(mm).
如图所示,固定刻度示数为2.0 mm,半毫米刻度线未露出,可动刻度示数为15.0,最后的读数为:2.0 mm+15.0×0.01 mm=2.150 mm.
二、游标卡尺
1.构造:主尺,游标尺(主尺和游标尺上各有一个内、外测量爪),游标卡尺上还有一个深度尺.(如图所示)
2.用途:测量厚度、长度、深度、内径、外径.
3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成.
不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1 mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其规格见下表:
刻度格数 (分度) 刻度 总长度 每小格与1 mm的差值 精确度(可精确到)
10 9 mm 0.1 mm 0.1 mm
20 19 mm 0.05 mm 0.05 mm
50 49 mm 0.02 mm 0.02 mm
4.读数:从主尺上读出整毫米数x,然后再从游标尺上找出第k条刻度线与主尺上某一刻度线对齐,即记录结果表示为(x+k×精确度) mm.
三、常用电表的读数
对于电压表和电流表的读数问题,首先要弄清电表量程,即指针指到最大刻度时电表允许通过的最大电压或电流,然后根据表盘总的刻度数确定精确度,按照指针的实际位置进行读数即可.
(1)0~3 V的电压表和0~3 A的电流表的读数方法相同,此量程下的精确度分别是0.1 V和0.1 A,看清楚指针的实际位置,读到小数点后面两位.
(2)对于0~15 V量程的电压表,精确度是0.5 V,在读数时只要求读到小数点后面一位,这时要求“格估读”,即读到0.1 V.
(3)对于0~0.6 A量程的电流表,精确度是0.02 A,在读数时只要求读到小数点后面两位,这时要求“半格估读”,即读到最小刻度的一半0.01 A.
题型二 电表改装
电表的两种改装的比较
改装成大量程电压表 改装成大量程电流表
内部电路
改装原理 串联分压 并联分流
所需电阻 阻值 R=-Rg R=
改装后 的量程 U=Ig(Rg+R) I=Ig
校准电路
题型三 测量电路与控制电路的选择
1.电流表的内、外接法
内接法 外接法
电路图
误差原因 电流表分压 U测=Ux+UA 电压表分流 I测=Ix+IV
电阻测量值 R测==Rx+RA>Rx 测量值大于真实值 R测==适用于测量 大阻值电阻 小阻值电阻
两种电路 选择标准 当RA Rx或Rx>时,选用电流表内接法 当RV Rx或Rx<时,选用电流表外接法 也可以用试触法来判断
2.滑动变阻器两种连接方式的对比
限流接法 分压接法 对比说明
电路图 串、并联关系不同
负载R上电压调节范围(不计电源内阻) ≤U≤E 0≤U≤E 分压电路调节范围大
闭合S前触头位置 b端 a端 都是为了保护电路元件
3.滑动变阻器两种接法的选择
滑动变阻器的最大阻值和用电器的阻值差不多且不要求电压从零开始变化,通常情况下,由于限流式结构简单、耗能少,优先使用限流式.
滑动变阻器必须接成分压电路的几种情况:
①要求电压表能从零开始读数,要求电压(电流)测量范围尽可能大;
②当待测电阻Rx R(滑动变阻器的最大阻值)时(限流式接法滑动变阻器几乎不起作用);
③若采用限流式接法,电路中的最小电流仍超过电路中电表、电阻允许的最大电流.
题型四 实验器材的选取与实物图的连接
1.仪器选择的技巧
(1)电压表、电流表:不超过量程,且要超过满偏刻度的.有时也可以从测量数据来确定选择的电表.
(2)滑动变阻器:分压选阻值小的且不超过其额定电流的滑动变阻器,限流选最大阻值为待测电阻2~3倍的滑动变阻器.电流半偏法测电阻,滑动变阻器选阻值大的.
(3)定值电阻:若用于电表改装,阻值与改装后的量程匹配,若用于保护电路,应使电流表、电压表读数在满偏刻度的以上.
2.实物图连接的注意事项
(1)画线连接各元件,一般先从电源正极开始,按照电路原理图依次到开关,再到滑动变阻器,按顺序以单线连接方式将主电路中串联的元件依次串联起来,再将要并联的元件并联到电路中去.
(2)连线时要将导线接在接线柱上,两条导线不能交叉.
(3)要注意电表的量程和正、负接线柱,要使电流从电表的正接线柱流入,从负接线柱流出.
(4)滑动变阻器的接法:限流法,导线分别连接到上、下接线柱上(两个接线柱);分压法,导线分别连接到上边一个接线柱和下边两个接线柱上(一上两下三个接线柱).
题型五 测电阻的其他几种方法
差值法
1.电流表差值法(安安法) 2.电压表差值法(伏伏法)
(1)基本原理:定值电阻R0的电流I0=I2-I1,电流表的电压U1=(I2-I1)R0. (2)可测物理量: ①若R0为已知量,可求得电流表的内阻r1=; ②若r1为已知量,可求得R0=. (1)基本原理:定值电阻R0的电压U0=U2-U1,电压表的电流I1=. (2)可测物理量: ①若R0为已知量,可求得电压表的内阻 r1=R0; ②若r1为已知量,可求得R0=r1.
半偏法
1.电流表半偏法(电路图如图所示) 2.电压表半偏法(电路图如图所示)
(1)实验步骤 ①先断开S2,再闭合S1,将R1由最大阻值逐渐调小,使电流表读数等于其量程Im; ②保持R1不变,闭合S2,将电阻箱R2由最大阻值逐渐调小,当电流表读数等于Im时记录下R2的值,则RA=R2. (2)实验原理 当闭合S2时,因为R1 RA,故总电流变化极小,认为不变仍为Im,电流表读数为,则R2中电流为,所以RA=R2. (3)误差分析 ①测量值偏小:RA测=R2<RA真. ②原因分析:当闭合S2时,总电阻减小,总电流增大, 大于原电流表的满偏电流,而此时电流表半偏,所以流经R2的电流比电流表所在支路的电流大,R2的电阻比电流表的电阻小,而我们把R2的读数当成电流表的内阻,故测得的电流表的内阻偏小. ③减小误差的方法:选电动势较大的电源E,选阻值非常大的滑动变阻器R1,满足R1 RA. (1)实验步骤 ①将R2的阻值调为零,闭合S,调节R1的滑动触头,使电压表读数等于其量程Um; ②保持R1的滑动触头不动,调节R2,当电压表读数等于Um时记录下R2的值,则RV=R2. (2)实验原理:RV R1,R2接入电路时可认为电压表和R2两端的总电压不变,仍为Um,当电压表示数调为时,R2两端电压也为,则二者电阻相等,即RV=R2. (3)误差分析 ①测量值偏大:RV测=R2>RV真. ②原因分析:当R2的阻值由零逐渐增大时,R2与电压表两端的总电压也将逐渐增大,因此电压表读数等于Um时,R2两端的电压将大于Um,使R2>RV,从而造成RV的测量值偏大.显然电压表半偏法适用于测量内阻较大的电压表的电阻. ③减小误差的方法:选电动势较大的电源E,选阻值较小的滑动变阻器R1,满足R1 RV.
等效替代法测电阻
如图所示,先让待测电阻串联后接到电动势恒定的电源上,调节R2,使电表指针指在适当位置读出电表示数;然后将电阻箱串联后接到同一电源上,保持R2阻值不变,调节电阻箱的阻值,使电表的读数仍为原来记录读数,则电阻箱的读数即等于待测电阻的阻值.
电桥法测电阻
(1)操作:如图甲所示,实验中调节电阻箱R3,使灵敏电流计G的示数为0.
(2)原理:当IG=0时,有UAB=0,则UR1=UR3,UR2=URx;电路可以等效为如图乙所示.
根据欧姆定律有=,=,由以上两式解得R1Rx=R2R3或=,这就是电桥平衡的条件,由该平衡条件可求出被测电阻Rx的阻值.
题型六 定值电阻在电学实验中的应用
定值电阻在电路中的主要作用
(1)保护作用:保护电表,保护电源.
(2)测量作用:已知电压的定值电阻相当于电流表,已知电流的定值电阻相当于电压表,主要有如图所示两种情况:
图甲中流过电压表V2的电流:I2=;
图乙中电流表A2两端的电压U2=(I1-I2)R;
(3)扩大作用:测量电路中用来扩大电表量程;当待测电阻过小时,可串联定值电阻用来扩大待测量.
同课章节目录