中小学教育资源及组卷应用平台
第4单元比高频考点检测卷-数学六年级上册人教版
一、选择题
1.在4:5中,若前项加上8,后项应( ),则比值不变.
A.加上8 B.加上5 C.乘2 D.乘3
2.一个等腰三角形的一个底角与顶角的比值是,这个三角形的底角是( )。
A.60° B.30° C.120° D.150°
3.下面问题中,不能用算式解决的是( )。
A.六(1)班图书摊位有科技书45本,故事书本数比科技书少,故事书有多少本?
B.六(2)班手工摊位有皮质挂件45个,比布艺挂件少,布艺挂件有多少个?
C.六(3)班食品摊位共有蛋糕和面包45个,蛋糕和面包数量比是2∶3,面包有几个?
D.六(4)班文具摊位有水笔45支,已经卖了,还剩下几支?
4.小军带了80元钱买学习用品,用去的钱与剩下的钱的比是3∶5,小军用了多少钱?( )
A.30元 B.50元 C.32元 D.48元
5.小区有一块长方形的草地,周长是160米,长和宽的比是5∶3。这个长方形草地的面积是( )平方米。
A.6000 B.1500 C.1280 D.375
6.李奶奶养了鸡和鸭共30只,鸡和鸭的数量比不可能是( )。
A.2∶1 B.3∶1 C.4∶1 D.5∶1
二、填空题
7.把∶3.5化成最简单的整数比是( ),比值是( )。
8.一块黑板长240dm,宽117dm。这块黑板长与宽的比是( )。
9.六(1)班有44人,男生人数和女生人数的比是5∶6,这个班的男生有( )人。
10.一个三角形,一个内角中∠1与∠2度数的比是1∶5,∠2与∠3度数的比是5∶3,这个三角形是( )三角形。
11.小红有两张正方形手帕,一张手帕边长是9cm,另一张手帕的边长是6cm,它们的边长比是( ),周长比是( ),面积比是( )。
12.甲的体重是乙的,甲的体重∶乙的体重=( )∶( )。
13.实验小学五年级有图书130本,四年级有图书70本,五年级给四年级( )本后,五年级与四年级图书的本数是3∶2。
三、判断题
14.把100g糖放入1000g水中,糖与糖水的比是1∶11。( )
15.两个圆的直径的比是5∶6,它们的面积的比是25∶30。( )
16.甲数比乙数多,甲数和乙数的比是7∶4。( )
17.如果柳树的棵数与杨树棵数的比是2∶3,杨树棵数与槐树棵数的比是6∶7,则柳树棵数与槐树棵数的比是4∶7。( )
18.某校男老师与女老师人数的比是.则女教师比男教师人数多.( )
19.白兔只数和黑兔只数的比是4∶5,表示白兔的只数比黑兔只数少。( )
四、计算题
20.化简比和求比值。
20厘米∶米 ∶ 小时∶15分钟
五、解答题
21.学校把购进图书的按2:3:4分给四、五、六年级,已知六年级分到56本,学校共购进图书多少本?
22.一批重1200吨的货物,已经运走了,余下的按7∶3分给甲、乙两个车队进行运输,乙车队需运走多少吨?
23.两地相距540千米,甲、乙两辆汽车同时从两地相向开出,4小时后相遇,已知甲、乙两车速度的比是5∶4。甲、乙两车每小时各行多少千米?
24.新华小学六年级有学生120人,五年级人数是六年级的,四年级与五年级人数的比是3:2.四年级有多少人?
25.在“爱心义卖”活动中,某小学四、五、六年级总收入为2700元,其中四年级的收入占总收入的,五、六年级的收入比是2∶5,那么五、六年级的收入各是多少元?
26.六年级一班举行元旦庆祝会,表演节目的人数情况如下。
表演项目 人数
小品 24人
唱歌 唱歌的人数比小品的多4人
跳舞 唱歌的人数比跳舞的少
(1)唱歌的有多少人?
(2)跳舞的有多少人?画出线段图,并用方程解答。
(3)唱歌的同学中,演唱校园歌曲和通俗歌曲的人数比是,演唱校园歌曲的有多少人?
参考答案:
题号 1 2 3 4 5 6
答案 D B B A B B
1.D
【分析】由在4:5中,若前项加上8,可知前项由4变成了12,也就是前项乘上3,根据比的性质,要使比值不变,后项也应该乘上3或加上10,据此进行选择.
【详解】前项加上8,由4变成了12,是前项乘上3;
后项也应该乘上3或加上10.
2.B
【解析】等腰三角形的两个底角相等,根据题意一个等腰三角形的一个底角与顶角的比值是,可得该等腰三角形的两底角与顶角之比为:1∶1∶4,再根据三角形内角和是180°,即可求出三角形的底角;据此解答即可。
【详解】由题意可知,等腰三角形的两个底角与顶角的比为1∶1∶4,则
180°÷(1+1+4)=180°÷6=30°
30×1=30°
所以这个三角形的底角是30°。
故选:B
【点睛】本题主要考查了比的应用,关键是要理解三角形内角和是180°。
3.B
【分析】A.科技书本数是单位“1”,故事书本数是科技书的,科技书本数×故事书对应分率=故事书本数;
B.布艺挂件个数是单位“1”,皮质挂件个数是布艺挂件的,皮质挂件个数÷对应分率=布艺挂件个数;
C.蛋糕和面包数量比是2∶3,根据比的意义,蛋糕个数是总个数的,将总个数看作单位“1”,面包个数是总个数的,总个数×面包对应分率=面包个数;
D.将总支数看作单位“1”, 卖了,还剩,总支数×还剩的对应分率=还剩的支数。
【详解】A.
(本)
故事书有27本。
B.
(个)
布艺挂件有75个。
C.
(个)
面包有27个。
D.
(支)
还剩下27支。
不能用算式解决的是六(2)班手工摊位有皮质挂件45个,比布艺挂件少,布艺挂件有多少个?
故答案为:B
4.A
【分析】根据题意,用去的钱与剩下的钱的比是3∶5,把用去的钱看作3份,剩下的钱看作5份,一共是(3+5)份;用总钱数除以总份数,求出一份数,再用一份数乘用去钱占的份数,即是小军用去的钱数。
【详解】一份数:
80÷(3+5)
=80÷8
=10(元)
用去:10×3=30(元)
小军用了30元。
故答案为:A
【点睛】本题考查比的应用,把比看作份数,求出一份数是解题的关键。
5.B
【分析】周长÷2,先求出长+宽的和,长宽和÷总份数,求出一份数,一份数分别乘长和宽的对应份数,求出长和宽,再根据长方形面积=长×宽,列式计算即可。
【详解】160÷2÷(5+3)
=80÷8
=10(米)
10×5=50(米)
10×3=30(米)
50×30=1500(平方米)
故答案为:B
【点睛】关键是理解比的意义,掌握长方形面积公式。
6.B
【分析】鸡和鸭的数量比可以看作它们的份数比,据此求出鸡和鸭平均分成的总份数,最后看30只能否平均分成这样的份数。据此解答。
【详解】A.2+1=3,30÷3=10(只),30只能平均分成3份,则鸡和鸭的数量比可能是2∶1;
B.3+1=4,30÷4=7(只)……2(只),30只不能平均分成4份,则鸡和鸭的数量比不可能是3∶1;
C.4+1=5,30÷5=6(只),30只能平均分成5份,则鸡和鸭的数量比可能是4∶1;
D.5+1=6,30÷6=5(只),30只能平均分成6份,则鸡和鸭的数量比可能是5∶1。
故答案为:B
7. 1∶5 0.2
【分析】(1)根据比的基本性质,即比的前项和后项同时乘或除以一个相同的数(0除外),比值不变,进而把比化成最简比;
(2)用比的前项除以后项即得比值。
【详解】∶3.5=∶=(×10)∶(×10)=7∶35=1∶5
∶3.5=0.7÷3.5=0.2
【点睛】此题考查化简比和求比值的方法,要注意区分:化简比的结果是一个比;而求比值的结果是一个数。
8.80∶39
【分析】根据黑板的长与宽直接写出它们的比即可,即长与宽的比是240∶117,再化简。
【详解】这块黑板长与宽的比是240∶117=(240÷3)∶(117÷3)=80∶39
【点睛】本题考查了比的知识点,掌握基础知识是解答本题的关键。
9.20
【分析】由题意可知,男生占六(1)班总人数的,男生人数=六(1)班的总人数×,据此解答。
【详解】44×
=44×
=20(人)
所以,这个班的男生有20人。
【点睛】本题主要考查比的应用,求出男生人数占总人数的分率是解答题目的关键。
10.钝角
【分析】根据题意可知,∠1、∠2、∠3度数的比是1∶5∶3,用三角形内角和除以总份数求出每份多少度,再乘最大角对应的份数求出最大角的度数,进而判断是什么三角形。
【详解】180°÷(1+5+3)×5
=180°÷9×5
=20°×5
=100°,这个三角形是钝角三角形。
【点睛】先求出三个角度数的比是解答本题的关键,再根据按比例分配的知识点解答。
11. 3∶2 3∶2 9∶4
【分析】两个正方形的边长之比为9∶6;周长之比为(9×4)∶(6×4);面积之比为92∶62;记得最后结果要化简。
【详解】9∶6=3∶2
(9×4)∶(6×4)=3∶2
92∶62=81∶36=9∶4
【点睛】对于正方形,周长之比等于边长之比;面积之比等于边长之比的的平方。
12. 4 5
【分析】根据“甲的体重是乙的”可知,乙的体重为单位“1”,则甲的体重为,再写出甲乙的体重比即可。
【详解】甲的体重∶乙的体重=∶1=4∶5。
【点睛】明确单位“1”,写出甲乙的体重是解答本题的关键,进而求出它们之间的比。
13.10
【分析】五年级与四年级图书的本数是3∶2,四年级的本书是全部的书的,两个年级一共有130+70,也就是200本,四年级的本数是200×=80本,四年级原来有70本,多了10本,所以五年级给了四年级10本书。
【详解】(本)
=
=
=
=(本)
所以五年级给四年级10本后,五年级与四年级图书的本数是3∶2。
【点睛】考查比的相关知识,重点是能够根据两个年级的数量比,求出四年级占总本书的几分之几。
14.√
【分析】将糖的质量加上水的质量,求出糖水的质量。将糖的质量比上糖水的质量,化简求出糖和糖水的最简整数比。
【详解】100+1000=1100(g)
100∶1100=(100÷100)∶(1100÷100)=1∶11
所以,糖与糖水的比是1∶11。
故答案为:√
【点睛】本题考查了比,明确比的意义,掌握比的化简方法是解题的关键。
15.×
【分析】根据圆的面积=πr2,可以设小圆直径为5r,大圆的直径为6r,分别带入圆的面积公式,表示出各自的面积,即可求解。
【详解】设小圆直径为5r,大圆的直径为6r,
小圆的面积=π(5r÷2)2=6.25πr2
大圆的面积=π(6r÷2)2=9πr2
它们的面积的比是:6.25πr2∶9πr2=25∶36
故答案为:×
【点睛】点评解答此题的关键是明白:圆的周长比就等于圆的半径比,圆的面积比就等于半径的平方比。
16.√
【分析】通过甲数比乙数多,将乙数看作4,甲数看作4+3,根据比的意义,写出甲乙两数比即可。
【详解】(4+3)∶4=7∶4,所以原题说法正确。
【点睛】关键是理解比的意义,两数相除又叫两个数的比。
17.√
【分析】根据比的基本性质,把柳树的棵数与杨树棵数比2∶3的前、后项都乘2就是4∶6,这样在两个比中杨树棵数所占的份数相同,据此即可写出柳树、杨树、槐树棵数的连比,进而求出柳树棵数与槐树棵数的比。
【详解】柳树与杨树棵数的比是2∶3=4∶6
杨树棵数与槐树棵数的比是6∶7
则柳树、杨树、槐树棵数的比是4∶6∶7。
即柳树棵数与槐树棵数的比是4∶7。
原题说法正确。
故答案为:√
18.√
【分析】男老师是3份,女老师是5份,用份数差除以男老师的份数即可求出女教师比男教师人数多几分之几.
【详解】女教师比男教师人数多:(5-3)÷3=, 原题说法正确.
故答案为√.
19.×
【分析】白兔只数和黑兔只数的比是4∶5,将白兔只数看作4,黑兔只数看作5,白兔和黑兔数量差÷黑兔只数=白兔的只数比黑兔只数少几分之几,据此分析。
【详解】(5-4)÷5
=1÷5
=
白兔只数和黑兔只数的比是4∶5,表示白兔的只数比黑兔只数少,原题说法错误。
故答案为:×
【点睛】关键是理解比的意义,差÷较大数=少几分之几。
20.2∶5;;3∶2;;6∶1;6
【分析】根据比的基本性质:比的前项和后项同时乘或除以一个不为0的数,比值不变,据此化简;根据求比值的方法:用比的前项除以比的后项,即可求出比值;注意单位名数的统一。
【详解】20厘米∶米
=20厘米∶50厘米
=(20÷10)∶(50÷10)
=2∶5
2∶5
=2÷5
=
0.6∶
=0.6∶0.4
=(0.6×10)∶(0.4×10)
=6∶4
=(6÷2)∶(4÷2)
=3∶2
3∶2
=3÷2
=
小时∶15分钟
=90分钟∶15分钟
=(90÷15)∶(15÷15)
=6∶1
6∶1
=6÷1
=6
21.210
【详解】试题分析:由“按2:3:4分给四、五、六年级,”知道六年级分到的图书占所分图书总数的,由此用除法列式求出所分图书的总数,而的单位“1”是学校共购进图书的本数,用除法列式求出学校共购进图书的本数.
解:56,
=56,
=56××,
=210(本);
答:学校共购进图书210本.
点评:关键是根据题意找出56本对应的分数及的单位“1”,再根据基本的数量关系解决问题.
22.120吨
【分析】一批重1200吨的货物,运走了,则余下吨,余下的按7∶3分给甲、乙两个车队进行运输,则乙车队需要运走余下部分的,乙车队需要运走的量=余下货物的量×,据此解答。
【详解】余下:
(吨)
乙车队:
(吨)
答:乙车队需运走120吨。
23.75千米;60千米
【详解】5+4=9
540
=135×
=75(千米/时);
540
=
=60(千米/时);
答:甲车的速度是每小时行驶75千米、乙车的速度是每小时行驶60千米。
24.四年级有144人
【详解】试题分析:把六年级人数看作单位“1”,根据一个数乘分数的意义,用乘法求出五年级的学生人数,进而把五年级的学生人数看作单位“1”,把“四年级与五年级人数的比是3:2”理解为:四年级人数是五年级学生人数的,根据一个数乘分数的意义,用乘法解答即可.
解:四年级与五年级人数的比是3:2,那么四年级人数是五年级学生人数的.
120××,
=120×,
=144(人);
答:四年级有144人.
点评:解答此题的关键是:进行转化,把“四年级与五年级人数的比是3:2”理解为:四年级人数是五年级学生人数的,根据一个数乘分数的意义,用乘法解答即可.
25.600元,1500元。
【分析】根据题意得:四年级的收入占总收入的,可运用分数乘法得出四年级收入;五、六年级的收入比是2∶5,已知五、六年级的总收入,根据按比分配的原则,总的是7份,其中五年级占了2份,六年级占了5份,再运用分数乘法可计算得出答案。
【详解】五、六年级总收入为:
2700×(1-)
=2700×
=2100(元)
五年级:2100×
=
=600(元)
六年级:2100×
=
=1500(元)
答:五年级收入600元,六年级收入1500元。
26.(1)16人
(2)图见详解;24人
(3)12人
【分析】(1)由于唱歌的人数比小品的多4人,单位“1”是小品的人数,单位“1”已知,用乘法,即用小品的人数×再加上4人即可求出唱歌的人数;
(2)由于唱歌的人数比跳舞的少,那么唱歌的人数相当于跳舞的:1-=,画一段跳舞的人数,把跳舞的人数平均分成3份,再画其中两份的长度就是唱歌的人数;可以设跳舞的人数有x人,则跳舞的人数×=唱歌的人数,据此即可列方程,再解方程即可求解。
(3)根据比的应用公式:总数÷总份数=1份量,用唱歌的人数÷(3+1)即可求出1份量,再乘3即可求出演唱校园歌曲的人数。
【详解】(1)24×+4
=12+4
=16(人)
答:唱歌的有16人。
(2)如下图所示:
解:设跳舞的人数有x人。
(1-)x=16
x=16
x=16÷
x=16×
x=24
答:跳舞的有24人。
(3)16÷(3+1)
=16÷4
=4(人)
4×3=12(人)
答:演唱校园歌曲的有12人。
【点睛】本题主要考查分数乘法的应用、列方程解应用题以及比的应用,熟练掌握它们的公式以及计算方法并灵活运用。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)