中小学教育资源及组卷应用平台
点和圆的位置关系 专项训练60题
一.选择题(共34小题)
1.如图,⊙O中,弦AB的长为4,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )
A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O外 D.无法确定
2.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为( )
A.3个 B.4个 C.5个 D.6个
3.如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为( )
A. B. C. D.
4.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为( )
A.4 B.7 C.8 D.
5.如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为( )
A.8 B.4 C.3.5 D.3
6.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD,P为弦CD的中点.当C、D两点在圆上运动时,△PAB面积的最大值是( )
A.8 B.6 C.4 D.3
7.如图的方格纸中,每个方格的边长为1,A、O两点皆在格线的交点上,今在此方格纸格线的交点上另外找两点B、C,使得△ABC的外心为O,求BC的长度为何( )
A.4 B.5 C. D.
8.如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是( )
A.60° B.62° C.72° D.73°
9.如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )
A.1个 B.2个 C.3个 D.4个
10.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是( )
A.10 B.8 C.6 D.4
11.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为( )
A.4 B.2 C.3 D.
12.在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是( )
A.34 B.12 C.6+3 D.6
13.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=3.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是( )
A.3 B.3 C. D.
14.如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是( )
A. B.π C. D.2π
15.如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
16.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=( )
A.2 B.3 C.3 D.4
17.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )
A.淇淇说得对,且∠A的另一个值是115°
B.淇淇说的不对,∠A就得65°
C.嘉嘉求的结果不对,∠A应得50°
D.两人都不对,∠A应有3个不同值
18.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为( )
A.1 B. C.21 D.2
19.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为( )
A.4 B.4 C. D.2
20.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )
A.2 B. C. D.
21.如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为( )
A.3π B.4π C.6π D.9π
22.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PCMP;④BPAB;⑤点F是△CMP外接圆的圆心,其中正确的个数为( )
A.2个 B.3个 C.4个 D.5个
23.如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在上.若∠AOD=∠BAC,则CD的长为( )
A.5 B.6 C.7 D.8
24.边长为2的正三角形的外接圆的半径是( )
A.2 B.2 C. D.
25.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )
A.E、F、G B.F、G、H C.G、H、E D.H、E、F
26.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )
A.2cm B.4cm C.6cm D.8cm
27.如图,四边形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5,则△ABD外心与△BCD外心的距离为何?( )
A.5 B.5 C. D.
28.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为( )
A.2 B.
C.2或2 D.4+2或2
29.若⊙O的半径为5cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是( )
A.点A在圆外 B.点A在圆上 C.点A在圆内 D.不能确定
30.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )
A.△ABE B.△ACF C.△ABD D.△ADE
31.如图,点P是△ABC内一点,且PA=PB=PC,则点P是( )
A.△ABC三边垂直平分线的交点
B.△ABC三条角平分线的交点
C.△ABC三条高的交点
D.△ABC三条中线的交点
32.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?( )
A.一 B.二 C.三 D.四
33.如图,O为△ABC的外心,△OCP为正三角形,OP与AC相交于D点,连接OA.若∠BAC=70°,AB=AC,则∠ADP的度数为何?( )
A.85 B.90 C.95 D.110
34.矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A.点B、C均在圆P外
B.点B在圆P外、点C在圆P内
C.点B在圆P内、点C在圆P外
D.点B、C均在圆P内
二.填空题(共18小题)
35.如图,AD是⊙O的直径,△ABC是⊙O的内接三角形.若∠DAC=∠ABC,AC=4,则⊙O的直径AD= .
36.如图,△ABC内接于⊙O,AB是⊙O的直径,点D是⊙O上一点,∠CDB=55°,则∠ABC= °.
37.如图,△ABC内接于⊙O且∠ACB=90°,弦CD平分∠ACB,连接AD,BD.若AB=5,AC=4,则BD= ,CD= .
38.如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来 .
39.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O的半径是 .
40.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .
41.在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为 .
42.点O是△ABC的外心,若∠BOC=110°,则∠BAC为 °.
43.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=10,AH=8,⊙O的半径为7,则AB= .
44.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是 度.
45.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 .
46.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 .
47.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为 ,线段DH长度的最小值为 .
48.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是 .
49.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 .
50.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是 .
51.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .
52.如图,△ABC的外心坐标是 .
三.解答题(共8小题)
53.已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.
(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;
(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.
54.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点O作AC的垂线,垂足为D,分别交直线BC,于点E,F,射线AF交直线BC于点G.
(1)求证AC=CG.
(2)若点E在CB的延长线上,且EB=CG,求∠BAC的度数.
(3)当BC=6时,随着CG的长度的增大,EB的长度如何变化?请描述变化过程,并说明理由.
55.如图,在△ABC中,AB=AC,点D,E在BC上,BD=CE.过A,D,E三点作⊙O,连接AO并延长,交BC于点F.
(1)求证AF⊥BC;
(2)若AB=10,BC=12,BD=2,求⊙O的半径长.
56.请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯Al﹣Birnmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Birnmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.
阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是的中点,
∴MA=MC.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是 .
57.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′ OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
58.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.
(1)求∠ACB的度数;
(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.
59.已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.
60.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.中小学教育资源及组卷应用平台
点和圆的位置关系 专项训练60题
一.选择题(共34小题)
1.如图,⊙O中,弦AB的长为4,点C在⊙O上,OC⊥AB,∠ABC=30°.⊙O所在的平面内有一点P,若OP=5,则点P与⊙O的位置关系是( )
A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O外 D.无法确定
【思路点拔】先根据垂径定理得出AD=BDAB,再由∠ABC=30°得出∠AOD=2∠B=60°,故∠A=30°,可知OA=2OD,设OD=x,则OA=2x,利用勾股定理求出x的值,进而可得出OA的长,根据点与圆的位置关系即可得出结论.
【解答】解:设AB与OC交于点D,
∵弦AB的长为4,OC⊥AB,
∴AD=BDAB=2,
∵∠ABC=30°,
∴∠AOD=2∠B=60°,
∴∠A=90°﹣60°=30°,
∴OA=2OD,
设OD=x,则OA=2x,
在Rt△AOD中,OD2+AD2=OA2,即x2+(2)2=(2x)2,
解得x=±2(负值舍去),
∴OA=2x=4,
∵OP=5,
∴OP>OA,
∴点P在圆外.
故选:C.
2.如图,点A,B,C,D均在直线l上,点P在直线l外,则经过其中任意三个点,最多可画出圆的个数为( )
A.3个 B.4个 C.5个 D.6个
【思路点拔】根据不在同一直线上的三点确定一个圆即可得到结论.
【解答】解:根据经过不在同一直线上的三点确定一个圆得,经过其中任意三个点,最多可画出圆的个数为6个,
故选:D.
3.如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为( )
A. B. C. D.
【思路点拔】连接OA,OC,CE,根据等腰三角形的性质得到∠B=∠ACB=30°,根据等边三角形的性质得到AC=OA,根据相似三角形的判定和性质即可得到结论.
【解答】解:连接OA,OC,CE,
∵AB=AC,∠BAC=120°,
∴∠B=∠ACB=30°,
∴∠AOC=60°,
∵OA=OC,
∴△AOC是等边三角形,
∴AC=OA,
∵∠AEC=∠ACB=30°,∠CAD=∠EAC,
∴△ACD∽△AEC,
∴,
∴AC2=AD AE,
∵AD=2,DE=3,
∴AC,
∴OA=AC,
即⊙O的半径为,
故选:A.
4.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为( )
A.4 B.7 C.8 D.
【思路点拔】首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.
【解答】解:如图,连接CD,在△AEB和△DEC中,
,
∴△AEB≌△DEC(ASA),
∴EB=EC,
∵BC=CE,
∴BE=CE=BC,
∴△EBC为等边三角形,
∴∠ACB=60°,
如图,作BM⊥AC于点M,
∵OF⊥AC,
∴AF=CF,
∵△EBC为等边三角形,
∴∠GEF=60°,
∴∠EGF=30°,
∵EG=2,
∴EF=1,
∵AE=ED=3,
∴CF=AF=4,
∴AC=8,EC=5,
∴BC=5,
∵∠BCM=60°,
∴∠MBC=30°,
∴CM,BMCM,
∴AM=AC﹣CM,
∴AB7.
故选:B.
5.如图,⊙O是锐角三角形ABC的外接圆,OD⊥AB,OE⊥BC,OF⊥AC.垂足分别为D,E,F,连接DE,EF,FD.若DE+DF=6.5,△ABC的周长为21,则EF的长为( )
A.8 B.4 C.3.5 D.3
【思路点拔】根据垂径定理得到AD=BD,AF=CF,BE=CE,根据三角形的中位线定理得到DE+DF+EF(AB+BC+AC)10.5,于是得到结论.
【解答】解:∵OD⊥AB,OE⊥BC,OF⊥AC,
∴AD=BD,AF=CF,BE=CE,
∴DE,DF,EF是△ABC的中位线,
∴DE,
∴DE+DF+EF(AB+BC+AC)10.5,
∵DE+DF=6.5,
∴EF=10.5﹣6.5=4,
故选:B.
6.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴、y轴分别交于A、B两点,C、D是半径为1的⊙O上两动点,且CD,P为弦CD的中点.当C、D两点在圆上运动时,△PAB面积的最大值是( )
A.8 B.6 C.4 D.3
【思路点拔】判断三角形OCD和三角形OAB都是等腰直角三角形,由题得,当P、O、Q共线时,S△ABP最大,求出AB、PQ,根据面积公式计算即可.
【解答】解:作OQ⊥AB,连接OP、OD、OC,
∵CD,OC=OD=1,
∴OC2+OD2=CD2,
∴△OCD为等腰直角三角形,
由y=﹣x﹣2得,点A(﹣2,0)、B(0,﹣2),
∴OA=OB=2,
∴△OAB为等腰直角三角形,
∴AB=2,OQ,
由题得,当P、O、Q共线时,S△ABP最大,
∵P为中点,
∴OP,
∴PQ=OP+OQ,
∴S△ABPAB PQ=3.
故选:D.
7.如图的方格纸中,每个方格的边长为1,A、O两点皆在格线的交点上,今在此方格纸格线的交点上另外找两点B、C,使得△ABC的外心为O,求BC的长度为何( )
A.4 B.5 C. D.
【思路点拔】三角形外心的性质:三角形的外心到三角形三顶点的距离相等,由此得到OB=OC=OA,从而确定B、C的位置.
【解答】解:∵△ABC的外心为O,
∴OB=OC=OA,
∵OA,
∴OB=OC,
∵B、C是方格纸格线的交点,
∴B、C的位置如图所示,
∴BC.
故选:D.
8.如图,⊙O是△ABC的外接圆,且AB=AC,∠BAC=36°,在上取点D(不与点A,B重合),连接BD,AD,则∠BAD+∠ABD的度数是( )
A.60° B.62° C.72° D.73°
【思路点拔】利用等腰三角形的性质可得∠ABC=∠C=72°,从而利用圆内接四边形的性质可求出∠D=108°,然后利用三角形内角和定理进行计算即可解答.
【解答】解:∵AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵四边形ADBC是圆内接四边形,
∴∠D+∠C=180°,
∴∠D=180°﹣∠C=108°,
∴∠BAD+∠ABD=180°﹣∠D=72°,
故选:C.
9.如图,⊙O是等边△ABC的外接圆,点D是弧AC上一动点(不与A,C重合),下列结论:①∠ADB=∠BDC;②DA=DC;③当DB最长时,DB=2DC;④DA+DC=DB,其中一定正确的结论有( )
A.1个 B.2个 C.3个 D.4个
【思路点拔】由△ABC是等边三角形,及同弧所对圆周角相等可得∠ADB=∠BDC,即可判断①正确;由点D是弧AC上一动点,可判断②错误;根据DB最长时,DB为⊙O直径,可判定③正确;在DB上取一点E,使DE=AD,可得△ADE是等边三角形,从而△ABE≌△ACD(SAS),有BE=CD,可判断④正确.
【解答】解:∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°,
∵,,
∴∠ADB=∠ACB=60°,∠BDC=∠BAC=60°,
∴∠ADB=∠BDC,故①正确;
∵点D是弧AC上一动点,
∴与不一定相等,
∴DA与DC不一定相等,故②错误;
当DB最长时,DB为⊙O直径,
∴∠BCD=90°,
∵∠BDC=60°,
∴∠DBC=30°,
∴DB=2DC,故③正确;
在DB上取一点E,使DE=AD,如图:
∵∠ADB=60°,
∴△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∵∠BAC=60°,
∴∠BAE=∠CAD,
∵AB=AC,
∴△ABE≌△ACD(SAS),
∴BE=CD,
∴BD=BE+DE=CD+AD,故④正确;
∴正确的有①③④,共3个,
故选:C.
10.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是( )
A.10 B.8 C.6 D.4
【思路点拔】由题知,AC为直径,得OD∥BC,且OD是△ABC的中位线,OE是三角形AFC的中位线,根据勾股定理求出圆的半径即可.
【解答】解:由题知,AC为直径,
∴∠ABC=90°,
∵OE⊥AB,
∴OD∥BC,
∵OA=OC,
∴OD为三角形ABC的中位线,
∴ADAB8=4,
又∵OD=3,
∴OA5,
∴OE=OA=5,
∵OE∥CF,点O是AC中点,
∴OE是三角形ACF的中位线,
∴CF=2OE=2×5=10,
故选:A.
11.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为( )
A.4 B.2 C.3 D.
【思路点拔】根据圆周角定理求得∠BOC=120°,过点O作OM⊥BC,然后结合,等腰三角形的性质和含30°角的直角三角形的性质分析求解.
【解答】解:过点O作OM⊥BC,交BC于点M,
∵⊙O是△ABC的外接圆,∠BAC=60°,
∴∠BOC=2∠BAC=120°,
又∵OB=OC,OM⊥BC,
∴∠COM∠BOC=60°,MB=MC,
∴在Rt△COM中,∠OCM=30°,
∴OMOC=1,CMOM,
∴BC=2CM=2,
故选:B.
12.在平面直角坐标系中,已知点A(0,1),B(0,﹣5),若在x轴正半轴上有一点C,使∠ACB=30°,则点C的横坐标是( )
A.34 B.12 C.6+3 D.6
【思路点拔】如图,以AB为边向右作等边△ABD,以D为圆心,DA为半径作⊙D交x的正半轴于C,连接CA,CB,此时∠ACB∠ADB=30°满足条件.过点D作DJ⊥AB于J,DK⊥OC于K,则四边形OJDK是矩形,求出OK,KC,可得结论.
【解答】解:如图,以AB为边向右作等边△ABD,以D为圆心,DA为半径作⊙D交x的正半轴于C,连接CA,CB,此时∠ACB∠ADB=30°满足条件.
过点D作DJ⊥AB于J,DK⊥OC于K,则四边形OJDK是矩形,
∵A(0,1),B(0,﹣5),
∴AB=6,
∵DA=DB=AB=6,DJ⊥AB,
∴AJ=JB=3,
∴DJ=OK3,
∴OJ=DK=2,
在Rt△DCK中,CK4,
∴OC=OK+KC=34,
∴点C的横坐标为34,
故选:A.
13.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=3.点P为△ABC内一点,且满足PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是( )
A.3 B.3 C. D.
【思路点拔】取AC中点O,连接OP,BO,由勾股定理的逆定理可求∠APC=90°,可得点P在以AC为直径的圆上运动,由三角形的三边关系可得BP≥BO﹣OP,当点P在线段BO上时,BP有最小值,由锐角三角函数可求∠BOC=60°,即可求解.
【解答】解:取AC中点O,连接OP,BO,
∵PA2+PC2=AC2,
∴∠APC=90°,
∴点P在以AC为直径的圆上运动,
在△BPO中,BP≥BO﹣OP,
∴当点P在线段BO上时,BP有最小值,
∵点O是AC的中点,∠APC=90°,
∴PO=AO=CO,
∵tan∠BOC,
∴∠BOC=60°,
∴△COP是等边三角形,
∴S△COPOC23,
∵OA=OC,
∴△ACP的面积=2S△COP,
故选:D.
14.如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是( )
A. B.π C. D.2π
【思路点拔】连接OB、BD,由等边△ABC,可得∠D=∠C=60°,且OB=OD,故△BOD是等边三角形,∠BOD=60°,又半径OA=3,根据弧长公式即可得劣弧BD的长.
【解答】解:连接OB、BD,如图:
∵△ABC为等边三角形,
∴∠C=60°,
∴∠D=∠C=60°,
∵OB=OD,
∴△BOD是等边三角形,
∴∠BOD=60°,
∵半径OA=3,
∴劣弧BD的长为π,
故选:B.
15.如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是( )
A.60° B.70° C.80° D.90°
【思路点拔】根据圆周角定理得出∠BOC=2∠A即可得到结果.
【解答】解:∵点O为△ABC的外心,∠A=40°,
∴∠A∠BOC,
∴∠BOC=2∠A=80°,
故选:C.
16.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=( )
A.2 B.3 C.3 D.4
【思路点拔】根据∠BAC=120°,AB=AC即可推出∠ACB和∠ABC的度数,然后由同弧所对圆周角相等以及直径所对圆周角为直角即可推出△ABD为直角三角形且∠ADB=30°,即可算出直径BD的长,再过点O过点O作OE⊥BC于点E,利用直角三角形中锐角三角函数计算出BE的长,再根据垂径定理即可计算出BC的长.
【解答】解:过点O作OE⊥BC于点E,如图所示:
∵∠BAC=120°,AB=AC,
∴∠ABC=∠ACB=30°,
又∵对应圆周角为∠ACB和∠ADB,
∴∠ACB=∠ADB=30°,
而BD为直径,
∴∠BAD=90°,
在Rt△BAD中,∠ADB=30°,AD=3,
∴cos30°,
∴BD=2,
∴OB,
又∵∠ABD=90°﹣∠ADB=90°﹣30°=60°,∠ABC=30°,
∴∠OBE=30°,
又∵OE⊥BC,
∴△OBE为直角三角形,
∴cos∠OBE=cos30°,
∴BE,
由垂径定理可得:BC=2BE=23,故C正确,
故选:C.
17.有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )
A.淇淇说得对,且∠A的另一个值是115°
B.淇淇说的不对,∠A就得65°
C.嘉嘉求的结果不对,∠A应得50°
D.两人都不对,∠A应有3个不同值
【思路点拔】直接利用圆内接四边形的性质结合圆周角定理得出答案.
【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.
故∠A′=180°﹣65°=115°.
故选:A.
18.如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为( )
A.1 B. C.21 D.2
【思路点拔】根据同圆的半径相等可知:点C在半径为1的⊙B上,通过画图可知,C在BD与圆B的交点时,OM最小,在DB的延长线上时,OM最大,根据三角形的中位线定理可得结论.
【解答】解:如图,
∵点C为坐标平面内一点,BC=1,
∴C在⊙B上,且半径为1,
取OD=OA=2,连接CD,
∵AM=CM,OD=OA,
∴OM是△ACD的中位线,
∴OMCD,
当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,
∵OB=OD=2,∠BOD=90°,
∴BD=2,
∴CD=21,
∴OMCD,即OM的最大值为;
故选:B.
19.如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为( )
A.4 B.4 C. D.2
【思路点拔】连接CD,根据等腰三角形的性质得到∠ACB=∠BAC=30°,根据圆内接四边形的性质得到∠D=180°﹣∠B=60°,求得∠CAD=30°,根据直角三角形的性质即可得到结论.
【解答】解:连接CD,
∵AB=BC,∠BAC=30°,
∴∠ACB=∠BAC=30°,
∴∠B=180°﹣30°﹣30°=120°,
∴∠D=180°﹣∠B=60°,
∵AD是直径,
∴∠ACD=90°,
∵∠CAD=30°,AD=8,
∴CDAD=4,
∴AC4,
故选:B.
20.如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )
A.2 B. C. D.
【思路点拔】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.
【解答】解:作AM⊥BC于M,如图:
重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.
∵△ABC是等边三角形,AM⊥BC,
∴AB=BC=3,BM=CMBC,∠BAM=30°,
∴AMBM,
∴△ABC的面积BC×AM3,
∴重叠部分的面积△ABC的面积;
故选:C.
21.如图,△ABC中,AB=AC,AD是∠BAC的平分线,EF是AC的垂直平分线,交AD于点O.若OA=3,则△ABC外接圆的面积为( )
A.3π B.4π C.6π D.9π
【思路点拔】由等腰三角形的性质得出BD=CD,AD⊥BC,则点O是△ABC外接圆的圆心,则由圆的面积公式πr2可得出答案.
【解答】解:∵AB=AC,AD是∠BAC的平分线,
∴BD=CD,AD⊥BC,
∵EF是AC的垂直平分线,
∴点O是△ABC外接圆的圆心,
∵OA=3,
∴△ABC外接圆的面积=πr2=π×32=9π.
故选:D.
22.如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PCMP;④BPAB;⑤点F是△CMP外接圆的圆心,其中正确的个数为( )
A.2个 B.3个 C.4个 D.5个
【思路点拔】根据折叠的性质得到∠DMC=∠EMC,∠AMP=∠EMP,于是得到∠PME+∠CME180°=90°,求得△CMP是直角三角形;故①正确;根据平角的定义得到点C、E、G在同一条直线上,故②错误;设AB=x,则AD=2x,得到DMADx,根据勾股定理得到CMx,根据射影定理得到CPx,得到PCMP,故③错误;求得PBAB,故④正确,根据平行线等分线段定理得到CF=PF,求得点F是△CMP外接圆的圆心,故⑤正确.
【解答】解:∵沿着CM折叠,点D的对应点为E,
∴∠DMC=∠EMC,
∵再沿着MP折叠,使得AM与EM重合,折痕为MP,
∴∠AMP=∠EMP,
∵∠AMD=180°,
∴∠PME+∠CME180°=90°,
∴△CMP是直角三角形;故①正确;
∵沿着CM折叠,点D的对应点为E,
∴∠D=∠MEC=90°,
∵再沿着MP折叠,使得AM与EM重合,折痕为MP,
∴∠MEG=∠A=90°,
∴∠GEC=180°,
∴点C、E、G在同一条直线上,故②错误;
∵AD=2AB,
∴设AB=x,则AD=2x,
∵将矩形ABCD对折,得到折痕MN;
∴DMADx,
∴CMx,
∵∠PMC=90°,MN⊥PC,
∴CM2=CN CP,
∴CPx,
∴PN=CP﹣CNx,
∴PMx,
∴,
∴PCMP,故③错误;
∵PCx,
∴PB=2xxx,
∴,
∴PBAB,故④正确,
∵CD=CE,EG=AB,AB=CD,
∴CE=EG,
∵∠CEM=∠G=90°,
∴FE∥PG,
∴CF=PF,
∵∠PMC=90°,
∴CF=PF=MF,
∴点F是△CMP外接圆的圆心,故⑤正确;
故选:B.
23.如图,⊙O的半径为5,△ABC内接于⊙O,且BC=8,AB=AC,点D在上.若∠AOD=∠BAC,则CD的长为( )
A.5 B.6 C.7 D.8
【思路点拔】连接BD,证得∠ACD+∠ACB=90°,即∠BCD=90°,得出BD为⊙O的直径,由勾股定理可求出答案.
【解答】
解:连接BD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠BAC+2∠ACB=180°,
∵∠BAC=∠AOD,
∴∠AOD+2∠ACB=180°,
∵∠AOD=2∠ACD,
∴2∠ACD+2∠ACB=180°,
∴∠ACD+∠ACB=90°,
即∠BCD=90°,
∴BD为⊙O的直径,
∴BD=10,
∴CD6,
故选:B.
24.边长为2的正三角形的外接圆的半径是( )
A.2 B.2 C. D.
【思路点拔】等边三角形的边长是其外接圆半径的倍,据此直接算出答案.
【解答】解:如图,等边△ABC中,三边的垂直平分线交一点O,则O是△ABC外接圆的圆心,
∴∠OBC=∠OCB=30°,BF=CFBC=1,
∴OFBF,
∴OB=2OF.
故选:C.
25.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )
A.E、F、G B.F、G、H C.G、H、E D.H、E、F
【思路点拔】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除.
【解答】解:∵OA,
∴OE=2<OA,所以点E在⊙O内,
OF=2<OA,所以点F在⊙O内,
OG=1<OA,所以点G在⊙O内,
OH2OA,所以点H在⊙O外,
故选:A.
26.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )
A.2cm B.4cm C.6cm D.8cm
【思路点拔】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程,即可解决问题.
【解答】解:过点A作BC边上的垂线交BC于点D,过点B作AC边上的垂线交AD于点O,则O为圆心.
设⊙O的半径为R cm,由等边三角形的性质知:∠OBC=30°,OB=R cm.
∴BD=cos∠OBC×OBR,BC=2BDR.
∵BC=12cm,
∴R4.
故选:B.
27.如图,四边形ABCD中,AB=AD,BC=DC,∠A=90°,∠ABC=105°.若AB=5,则△ABD外心与△BCD外心的距离为何?( )
A.5 B.5 C. D.
【思路点拔】如图,连接AC,作DF⊥BC于F,AC与BD、DF交于点E、G,先证明E是△ABD外心,G是△BCD外心,在RT△EGD中,根据tan∠EDG即可解决问题.
【解答】解:如图,连接AC,作DF⊥BC于F,AC与BD、DF交于点E、G.
∵AB=AD,CB=CD,
∴AC垂直平分BD,
∵∠BAD=90°,
∴∠ABD=∠ADB=45°,
∵∠ABC=105°,
∴∠CBD=60°,∵CB=CD,
∴△BCD是等边三角形,△ABD是等腰直角三角形,
∴点E是△BAD的外心,点G是△BCD的外心,
在RT△ABD中,∵AB=AD=5,
∴BD=10,
∴BE=DE=5,
在RT△EDG中,∵∠DEG=90°,∠EDG=30°,ED=5,
∴tan30°,
∴EG=5.
∴△ABD外心与△BCD外心的距离为5.
故选:A.
28.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为( )
A.2 B.
C.2或2 D.4+2或2
【思路点拔】根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.
【解答】解:由题意可得,如图所示
存在两种情况,
当△ABC为△A1BC时,连接OB、OC,
∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,
∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,
∴CD=1,OD,
∴2,
当△ABC为△A2BC时,连接OB、OC,
∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,
∴△OBC为等边三角形,OB=OC=BC=2,OA2⊥BC于点D,
∴CD=1,OD,
∴S△A2BC2,
由上可得,△ABC的面积为或2,
故选:C.
29.若⊙O的半径为5cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系是( )
A.点A在圆外 B.点A在圆上 C.点A在圆内 D.不能确定
【思路点拔】根据点与圆的位置关系的判定方法进行判断.
【解答】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,
即点A到圆心O的距离小于圆的半径,
∴点A在⊙O内.
故选:C.
30.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )
A.△ABE B.△ACF C.△ABD D.△ADE
【思路点拔】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.
【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.
故选:B.
31.如图,点P是△ABC内一点,且PA=PB=PC,则点P是( )
A.△ABC三边垂直平分线的交点
B.△ABC三条角平分线的交点
C.△ABC三条高的交点
D.△ABC三条中线的交点
【思路点拔】利用线段垂直平分线的性质定理的逆定理判断点P在AB、BC、AC的垂直平分线上.
【解答】解:∵PA=PB,
∴点P在AB的垂直平分线上,
同理可得点P在BC的垂直平分线上,点P在AC的垂直平分线上,
即点P为△ABC三边垂直平分线的交点.
故选:A.
32.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?( )
A.一 B.二 C.三 D.四
【思路点拔】根据钝角三角形的外心在三角形的外部和外心在边的垂直平分线上进行解答即可.
【解答】解:∵∠BAC=95°,
∴△ABC的外心在△ABC的外部,
即在x轴的下方,
∵外心在线段BC的垂直平分线上,即在直线x上,
∴△ABC的外心在第四象限,
故选:D.
33.如图,O为△ABC的外心,△OCP为正三角形,OP与AC相交于D点,连接OA.若∠BAC=70°,AB=AC,则∠ADP的度数为何?( )
A.85 B.90 C.95 D.110
【思路点拔】利用三角形外心的性质以及利用等腰三角形的性质得出∠OAC=∠OCA=35°,进而结合三角形外角的性质得出答案.
【解答】解:∵O为△ABC的外心,∠BAC=70°,AB=AC,
∴∠OAC=35°,AO=CO,
∴∠OAC=∠OCA=35°,
∴∠AOC=110°,
∵△OCP为正三角形,
∴∠AOP=50°,
∴∠ADP=∠OAD+∠AOD=85°.
故选:A.
34.矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A.点B、C均在圆P外
B.点B在圆P外、点C在圆P内
C.点B在圆P内、点C在圆P外
D.点B、C均在圆P内
【思路点拔】根据BP=3AP和AB的长度求得AP的长,然后利用勾股定理求得圆P的半径PD的长,根据点B、C到P点的距离判断点B、点C与圆的位置关系.
【解答】解:∵AB=8,点P在边AB上,且BP=3AP,
∴AP=2,
∴r=PD7,
PC9,
∵PB=6<7,PC=9>7
∴点B在圆P内、点C在圆P外
故选:C.
二.填空题(共18小题)
35.如图,AD是⊙O的直径,△ABC是⊙O的内接三角形.若∠DAC=∠ABC,AC=4,则⊙O的直径AD= 4 .
【思路点拔】连接CD、OC,根据弧、弦、圆周角之间的关系证明△ACD是等腰直角三角形,即可求得AD的长.
【解答】解:如图,连接CD、OC.
∵∠DAC=∠ABC,
∴,
∴AC=CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴△ACD是等腰直角三角形,
∴AC=CD=4,
∴ADAC=4.
故答案为:4.
36.如图,△ABC内接于⊙O,AB是⊙O的直径,点D是⊙O上一点,∠CDB=55°,则∠ABC= 35 °.
【思路点拔】根据圆周角定理和三角形的内角和定理即可得到结论.
【解答】解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵∠A=∠D=55°,
∴∠ABC=180°﹣∠ACB﹣∠A=35°,
故答案为:35.
37.如图,△ABC内接于⊙O且∠ACB=90°,弦CD平分∠ACB,连接AD,BD.若AB=5,AC=4,则BD= ,CD= .
【思路点拔】首先利用已知条件得到AB为直径,然后可以证明△ADB为等腰直角三角形,由此求出BD,接着把△ACD绕D逆时针旋转90°得到△DBE,证明△DCE为等腰直角三角形即可解决问题.
【解答】解:∵△ABC内接于⊙O且∠ACB=90°,
∴AB为⊙O的直径,
∴∠ADB=90°,
∴∠DAC+∠DBC=180°,
∵弦CD平分∠ACB,
∴∠ACD=∠BCD=45°,
∴AD=BD,
∵AB=5,AC=4,
∴CB=3,AD=BD,
∴如图把△ACD绕D逆时针旋转90°得到△DBE,
∴∠DBE=∠DAC,BE=AC,
∴∠DBC+∠DBE=180°,
∴C、B、E三点共线,
∴△DCE为等腰直角三角形,
∴CE=AC+BC=7,
∴CD=DE.
故答案为:,.
38.如图,在5×7网格中,各小正方形边长均为1,点O,A,B,C,D,E均在格点上,点O是△ABC的外心,在不添加其他字母的情况下,则除△ABC外把你认为外心也是O的三角形都写出来 △ABD,△ACD,△BCD .
【思路点拔】由网格利用勾股定理分别求解OA,OB,OC,OD,OE,根据三角形的外心到三角形顶点的距离相等可求解.
【解答】解:由图可知:
OA,
OB,
OC,
OD,
OE,
∴OA=OB=OC=OD≠OE,
∴△ABD,△ACD,△BCD的外心都是点O,
故答案为:△ABD,△ACD,△BCD.
39.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9cm,则⊙O的半径是 6.5cm或2.5cm .
【思路点拔】点P应分在位于圆的内部与外部两种情况讨论:①当点P在圆内时,直径=最小距离+最大距离;②当点P在圆外时,直径=最大距离﹣最小距离.
【解答】解:分为两种情况:
①当点在圆内时,如图1,
∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,
∴直径AB=4+9=13(cm),
∴半径r=6.5cm;
②当点在圆外时,如图2,
∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,
∴直径AB=9﹣4=5(cm),
∴半径r=2.5cm.
综上所述,圆O的半径为6.5cm或2.5cm.
故答案为:6.5cm或2.5cm.
40.如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .
【思路点拔】连接CO,OB,则∠O=2∠A=60°,得到△BOC是等边三角形,求得BC=2,根据等腰直角三角形的性质即可得到结论.
【解答】解:连接CO,OB,
则∠O=2∠A=60°,
∵OC=OB,
∴△BOC是等边三角形,
∵⊙O的半径为2,
∴BC=2,
∵CD⊥AB,∠CBA=45°,
∴CDBC,
故答案为:.
41.在△ABC中,∠ABC=90°,AB=2,BC=3.点D为平面上一个动点,∠ADB=45°,则线段CD长度的最小值为 .
【思路点拔】根据∠ADB=45°,AB=2,作△ABD的外接圆O,连接OC,当O、D、C三点共线时,CD的值最小.将问题转化为点圆最值.可证得△AOB为等腰直角三角形,OB=OA,同样可证△OBE也为等腰直角三角形,OE=BE=1,由勾股定理可求得OC的长为,最后CD最小值为OC﹣OD.
【解答】解:如图所示.
∵∠ADB=45°,AB=2,作△ABD的外接圆O(因求CD最小值,故圆心O在AB的右侧),连接OC,
当O、D、C三点共线时,CD的值最小.
∵∠ADB=45°,
∴∠AOB=90°,
∴△AOB为等腰直角三角形,
∴AO=BO=sin45°×AB.
∵∠OBA=45°,∠ABC=90°,
∴∠OBE=45°,作OE⊥BC于点E,
∴△OBE为等腰直角三角形.
∴OE=BE=sin45° OB=1,
∴CE=BC﹣BE=3﹣1=2,
在Rt△OEC中,
OC.
当O、D、C三点共线时,
CD最小为CD=OC﹣OD.
故答案为:.
42.点O是△ABC的外心,若∠BOC=110°,则∠BAC为 55°或125 °.
【思路点拔】由题意可知,需要分两种情况:①∠BAC是锐角;②∠BAC是钝角,再分别求解即可.
【解答】解:①∠BAC是锐角,如图,
∵∠BOC=110°,
∴∠BAC=55°;
②∠BAC是钝角,如图,
∵∠BAC+∠BA′C=180°,
∴∠BA′C=125°.
故答案为:55°或125.
43.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=10,AH=8,⊙O的半径为7,则AB= .
【思路点拔】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.
【解答】解:作直径AD,连接BD,
∵AD为直径,
∴∠ABD=90°,
又AH⊥BC,
∴∠ABD=∠AHC,
由圆周角定理得,∠D=∠C,
∴△ABD∽△AHC,
∴,即,
解得,AB,
故答案为:.
44.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是 120 度.
【思路点拔】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.
【解答】解:连接OA,OB,
∵△ABC是⊙O的内接正三角形,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵∠CAB=60°,
∴∠OAD=30°,
∴∠OAD=∠OBE,
∵AD=BE,
∴△OAD≌△OBE(SAS),
∴∠DOA=∠BOE,
∴∠DOE=∠DOA+∠AOE=∠AOE+∠BOE=∠AOB=120°,
故答案为:120.
45.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为 22 .
【思路点拔】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.
【解答】解:如图,连接BE,BD.
由题意BD2,
∵∠MBN=90°,MN=4,EM=NE,
∴BEMN=2,
∴点E的运动轨迹是以B为圆心,2为半径的弧,
∴当点E落在线段BD上时,DE的值最小,
∴DE的最小值为22.(也可以用DE≥BD﹣BE,即DE≥22确定最小值)
故答案为22.
46.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 99 .
【思路点拔】首先过C作CM⊥AB于M,由弦AB已确定,可得要使△ABC的面积最大,只要CM取最大值即可,即可得当CM过圆心O时,CM最大,然后由圆周角定理,证得△AOB是等腰直角三角形,则可求得CM的长,继而求得答案.
【解答】解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,
∵弦AB已确定,
∴要使△ABC的面积最大,只要CM取最大值即可,
如图所示,当CM过圆心O时,CM最大,
∵CM⊥AB,CM过O,
∴AM=BM(垂径定理),
∴AC=BC,
∵∠AOB=2∠ACB=2×45°=90°,
∴OM=AMAB3,
∴OA3,
∴CM=OC+OM=33,
∴S△ABCAB CM6×(33)=99.
故答案为:99.
47.如图,在矩形ABCD中,AB=4,BC=3,E,F分别为AB,CD边的中点.动点P从点E出发沿EA向点A运动,同时,动点Q从点F出发沿FC向点C运动,连接PQ,过点B作BH⊥PQ于点H,连接DH.若点P的速度是点Q的速度的2倍,在点P从点E运动至点A的过程中,线段PQ长度的最大值为 3 ,线段DH长度的最小值为 .
【思路点拔】连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.首先利用相似三角形的性质证明EM=2FM,推出EM=2,FM=1,当点P与A重合时,PQ的值最大,解直角三角形求出OD,OH即可解决问题.
【解答】解:连接EF交PQ于M,连接BM,取BM的中点O,连接OH,OD,过点O作ON⊥CD于N.
∵四边形ABCD是矩形,DF=CF,AE=EB,
∴四边形ADFE是矩形,
∴EF=AD=3,
∵FQ∥PE,
∴△MFQ∽△MEP,
∴,
∵PE=2FQ,
∴EM=2MF,
∴EM=2,FM=1,
当点P与A重合时,PQ的值最大,此时AE=EM=2,△AEM,△FMQ都是等腰直角三角形,
∴PM2,MQ,
∴PQ=3,
∵MF∥ON∥BC,MO=OB,
∴FN=CN=1,DN=DF+FN=3,ON2,
∴OD,
∵BH⊥PQ,
∴∠BHM=90°,
∵OM=OB,
∴OHBM,
∵DH≥OD﹣OH,
∴DH,由于M和B点都是定点,所以其中点O也是定点,当O,H,D共线时,此时DH最小,
∴DH的最小值为,
故答案为3,.
48.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是 .
【思路点拔】连接OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE.
【解答】解:连接OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,
∵⊙O是△ABC的外接圆,∠BAC=45°,
∴∠BOC=90°,
∵BD=4,CD=1,
∴BC=4+1=5,
∴OB=OC,
∴OA,OF=BF,
∴DF=BD﹣BF,
∴OG,GD,
解法一:在Rt△AGO中,AG,
∴GE,
∴DE=GE﹣GD.
解法二:在Rt△AGO中,AG,
∴AD=AG+GD,
∵AD×DE=BD×CD,
∴DE.
故答案为:.
49.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是 6 .
【思路点拔】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.
【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),
∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如图延长AD交⊙D于P′,此时AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=6,
∴a的最大值为6.
故答案为6.
50.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是 3<r<5 .
【思路点拔】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.
【解答】解:在直角△ABD中,CD=AB=4,AD=3,
则BD5.
由图可知3<r<5.
故答案为:3<r<5.
51.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 10或8 .
【思路点拔】直角三角形的外接圆圆心是斜边的中点,那么半径为斜边的一半,分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.
【解答】解:由勾股定理可知:
①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;
②当两条直角边长分别为16和12,则直角三角形的斜边长20,
因此这个三角形的外接圆半径为10.
综上所述:这个三角形的外接圆半径等于8或10.
故答案为:10或8.
52.如图,△ABC的外心坐标是 (﹣2,﹣1) .
【思路点拔】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂直平分线,两垂直平分线的交点即为△ABC的外心.
【解答】解:∵△ABC的外心即是三角形三边垂直平分线的交点,
∴作图得:
∴EF与MN的交点O′即为所求的△ABC的外心,
∴△ABC的外心坐标是(﹣2,﹣1).
故答案为:(﹣2,﹣1).
三.解答题(共8小题)
53.已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.
(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;
(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.
【思路点拔】(1)由垂径定理证出∠ACB=∠ACD,则可得出结论;
(2)延长AE交BC于M,延长CE交AB于N,证明四边形AECD是平行四边形,则AE=CD=3,根据勾股定理即可得出答案.
【解答】(1)证明:∵OA⊥BD,
∴,
∴∠ACB=∠ACD,
即CA平分∠BCD;
(2)延长AE交BC于M,延长CE交AB于N,
∵AE⊥BC,CE⊥AB,
∴∠AMB=∠CNB=90°,
∵BD是⊙O的直径,
∴∠BAD=∠BCD=90°,
∴∠BAD=∠CNB,∠BCD=∠AMB,
∴AD∥NC,CD∥AM,
∴四边形AECD是平行四边形,
∴AE=CD=3,
∴BC3.
54.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点O作AC的垂线,垂足为D,分别交直线BC,于点E,F,射线AF交直线BC于点G.
(1)求证AC=CG.
(2)若点E在CB的延长线上,且EB=CG,求∠BAC的度数.
(3)当BC=6时,随着CG的长度的增大,EB的长度如何变化?请描述变化过程,并说明理由.
【思路点拔】(1)作直径作 AM ,根据垂径定理得AC⊥EF,根据等腰三角形的性质和三角形的外角即可得到结论;
(2)连接 AE ,过 A 作 AH ⊥ BC 于 H ,根据等腰三角形的性质和三角形内角和定理即可得到结论;
(3)分三种情况讨论:当CG=6,当CG≥6,当3<CG<6,再根据相似证明即可.
【解答】(1)证明:过A作直径AM,
∵AB=AC,
∴AM⊥BC,
∴∠E+∠EOM=90°,
∵AC⊥EF,
∴∠OAD+∠AOD=90°,
∴∠E=∠OAD,
∵OA=OF,
∴∠OAD+∠DAF=∠AFO=∠E+∠G,
∴∠DAF=∠G,
AC=CG;
(2)解:∵AB=AC,AM⊥BC,
∴∠BAM=∠CAM,
设∠BAM=∠CAM=2α,
∴∠ABC=∠ACB(180°﹣∠BAC)=90°﹣2α,
∵AC=CG,
∴∠CAG=∠CGA=45°﹣α,
∴∠BAG=2α+2α+45°﹣α=45°+3α,
如图:连AE,
∵EF⊥AC,又EF过圆心,
∴EF垂直平分AC,
∴EC=AE,
∵BH=HC,又EB=CG,
∴HE=HG,
∴AM垂直平分EG,
∴AE=AG,
∴EC=AG,
∵EB=CG,
∴EB+BC=BC+CG,
∴EC=BG,
∴AG=BG,
∴∠BAG=∠ABG,
∴45°+3α=90°﹣2α,
∴α=9°,
∴∠BAC=4α=36°;
(3)答:当CG=6,BE=0;
当CG≥6时,BE随CG的增大而增大;
当3<CG<6时,BE随CG的增大而减小.
说明:①当BE=0时,即点E与B重合,
在△BOH和△AOD中,
,
∴△BOH≌△AOD(AAS),
∴AD=BH=3,
∴AC=2AD=6,
∴AB=AC=BC=6,
∴△ABC为等边三角形,
∴∠BAC=∠ACB=60°,
∴∠CAG=30°,∠CAG+∠G=60°,
∴∠G=30°=∠CAG,
∴CA=CG=6;
②当CG≥6时,如图:
∵∠E=∠CAH,∠EDC=∠AHC=90°,
∴△ACH∽△ECD,
∴,
∴,
∴,
∴BECG2﹣6,
∴BE随CG的增大而增大.
③当3<CG<6时,如图,
∵∠ACM=∠DCE,∠EDC=∠AMC=90°,
∴△AMC∽△EDC,
∴,
∴,
∴,
∴BECG2+6,
∴BE随CG的增大而减小.
综上所述:
当CG≥6时,BE随CG的增大而增大;
当3<CG<6时,BE随CG的增大而减小.
55.如图,在△ABC中,AB=AC,点D,E在BC上,BD=CE.过A,D,E三点作⊙O,连接AO并延长,交BC于点F.
(1)求证AF⊥BC;
(2)若AB=10,BC=12,BD=2,求⊙O的半径长.
【思路点拔】(1)连接AD,AE,根据等腰三角形的性质∠B=∠C,根据全等三角形的性质得到AD=AE,根据全等三角形的判定和性质定理以及等腰三角形的性质于是得到AF⊥BC;
(2)根据等腰三角形的性质得到BF=CFBC=6,根据勾股定理得到AF8,连接OD,设DO=AO=x,根据勾股定理即可得到结论.
【解答】(1)证明:连接AD,AE,
∵AB=AC,
∴∠B=∠C,
在△ABD与△ACE中,
,
∴△ABD≌△ACE(SAS),
∴AD=AE,
连接OD,OE,
则OD=OE,
∵AO=AO,
∴△ADO≌△AEO(SSS),
∴∠DAF=∠EAF,
∴AF⊥BC;
(2)解:∵AB=AC,AF⊥BC,
∴BF=CFBC=6,
∴AF8,
∵BD=2,
∴DF=4,
连接OD,设DO=AO=x,
∴OF=AF﹣x=8﹣x,
∵OD2=OF2+DF2,
∴x2=(8﹣x)2+42,
∴x=5,
∴⊙O的半径长为5.
56.请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯Al﹣Birnmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Birnmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.
阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是的中点,
∴MA=MC.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是 2+2 .
【思路点拔】(1)首先证明△MBA≌△MGC(SAS),进而得出MB=MG,再利用等腰三角形的性质得出BD=GD,即可得出答案;
(2)首先证明△ABF≌ACD(SAS),进而得出AF=AD,以及CD+DE=BE,进而求出DE的长即可得出答案.
【解答】(1)证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.
∵M是的中点,
∴MA=MC.
在△MBA和△MGC中
∵,
∴△MBA≌△MGC(SAS),
∴MB=MG,
又∵MD⊥BC,
∴BD=GD,
∴DC=GC+GD=AB+BD;
(2)解:如图3,截取BF=CD,连接AF,AD,CD,
由题意可得:AB=AC,∠ABF=∠ACD,
在△ABF和△ACD中
∵,
∴△ABF≌ACD(SAS),
∴AF=AD,
∵AE⊥BD,
∴FE=DE,则CD+DE=BE,
∵∠ABD=45°,
∴BE,
则△BDC的周长是2+2.
故答案为:2+2.
57.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′ OP=r2,则称点P′是点P关于⊙O的“反演点”.
如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.
【思路点拔】设OA交⊙O于C,连接B′C,如图2,根据新定义计算出OA′=2,OB′=4,则点A′为OC的中点,点B和B′重合,再证明△OBC为等边三角形,则B′A′⊥OC,然后在Rt△OA′B′中,利用正弦的定义可求A′B′的长.
【解答】解:设OA交⊙O于C,连接B′C,如图2,
∵OA′ OA=42,
而r=4,OA=8,
∴OA′=2,
∵OB′ OB=42,
∴OB′=4,即点B和B′重合,
∵∠BOA=60°,OB=OC,
∴△OBC为等边三角形,
而点A′为OC的中点,
∴B′A′⊥OC,
在Rt△OA′B′中,sin∠A′OB′,
∴A′B′=4sin60°=2.
58.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.
(1)求∠ACB的度数;
(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.
【思路点拔】(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;
(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.
【解答】(1)证明:在△AEB和△DEC中
,
∴△AEB≌△DEC(ASA),
∴EB=EC,
又∵BC=CE,
∴BE=CE=BC,
∴△EBC为等边三角形,
∴∠ACB=60°;
(2)解:作BM⊥AC于点M,
∵OF⊥AC,
∴AF=CF,
∵△EBC为等边三角形,
∴∠GEF=60°,
∴∠EGF=30°,
∵EG=2,
∴EF=1,
又∵AE=ED=3,
∴CF=AF=4,
∴AC=8,EC=5,
∴BC=5,
∵∠BCM=60°,
∴∠MBC=30°,
∴CM,BM,
∴AM=AC﹣CM,
∴AB7.
59.已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.
(1)求证:△ABD≌△CBE;
(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.
【思路点拔】(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS定理可知△ABD≌△CBE;
(2)由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE是菱形.
【解答】(1)证明:∵∠ABC=∠DBE,
∴∠ABC+∠CBD=∠DBE+∠CBD,
∴∠ABD=∠CBE,
在△ABD与△CBE中,
∵,
∴△ABD≌△CBE(SAS)
(2)解:四边形BDCE是菱形.证明如下:
同(1)可证△ABD≌△CBE,
∴CE=AD,
∵点D是△ABC外接圆圆心,
∴DA=DB=DC,
又∵BD=BE,
∴BD=BE=CE=CD,
∴四边形BDCE是菱形.
60.如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
【思路点拔】(1)利用等弧对等弦即可证明.
(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.
【解答】(1)证明:∵AD为直径,AD⊥BC,
∴由垂径定理得:
∴根据圆心角、弧、弦之间的关系得:BD=CD.
(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.
理由:由(1)知:,
∴∠1=∠2,
又∵∠2=∠3,
∴∠1=∠3,
∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,
∵BE是∠ABC的平分线,
∴∠4=∠5,
∴∠DBE=∠DEB,
∴DB=DE.
由(1)知:BD=CD
∴DB=DE=DC.
∴B,E,C三点在以D为圆心,以DB为半径的圆上.