1、将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )
答案 B
解析 由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B.
2、某几何体的三视图如图所示(单位:cm),则该几何体的体积为________cm3,表面积为________cm2.
答案
解析 由三视图知该几何体为一个半球被割去后剩下的部分,
其球半径为1,所以该几何体的体积为××π×13=(cm3),
表面积为××4π×12+×π×12+2××π×12=(cm2).
3、已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )
A.1 cm B.2 cm
C.3 cm D. cm
答案 B
解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2 cm.
4、体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )
A.12π B.π
C.8π D.4π
答案 A
解析 由题意可知正方体的棱长为2,其体对角线2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.
5、某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.
答案 80 40
解析 由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的棱长为2 cm,下面长方体的底面边长为4 cm,高为2 cm,其直观图如图所示,
其表面积S=6×22+2×42+4×2×4-2×22=80(cm2),体积V=2×2×2+4×4×2=40(cm3).
6、 如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为______.
答案
解析 设点P到平面ABC,平面A1B1C1的距离分别为h1,h2,
则棱柱的高为h=h1+h2,又记S=S△ABC=,
则三棱柱的体积为V=Sh=1.而从三棱柱中去掉四棱锥
P-ACC1A1的剩余体积为V′=VP-ABC+=Sh1+Sh2=S(h1+h2)=,
从而=V-V′=1-=.
无
题型一 简单几何体的三视图
命题点1 已知几何体,识别三视图
例1 如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是( )
答案 D
解析 正视图的轮廓线是矩形DCFG,点E在平面DCFG上的投影为DG的中点,且边界BE,BG可视,故正视图为选项B或D中的正视图,侧视图的轮廓线为直角梯形ADGE,且边界BF不可视,故侧视图为选项D中的侧视图,故选D.
命题点2 已知三视图,判断几何体的形状
例2 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )
A.17π B.18π C.20π D.28π
答案 A
解析 由该几何体的三视图可知,这个几何体是把一个球挖掉它的得到的(如图所示).设该球的半径为R,则×πR3=π,得R=2.所以它的表面积为4π×22-×4π×22+3××π×22=17π.故选A.
命题点3 已知三视图中的两个视图,判断第三个视图
例3 一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )
答案 D
解析 由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD,故选D.
【同步练习】
1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18
C.90 D.81
(2)如图是一几何体的直观图、正视图和俯视图,
则该几何体的侧视图为( )
答案 (1)B (2)B
解析 (1)由题意知,几何体为平行六面体,边长分别为3,3,,几何体的表面积S=3×6×2+3×3×2+3××2=54+18.
(2)由直观图、正视图和俯视图可知,该几何体的侧视图应为平面PAD,且EC投影在平面PAD上,故B正确.
题型二 空间几何的三视图
例4 将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )
错解展示
解析 结合正方体中各顶点投影,侧视图应为一个正方形,中间两条对角线.
答案 C
现场纠错
解析 侧视图中能够看到线段AD1,应画为实线,而看不到B1C,应画为虚线.由于AD1与B1C不平行,投影为相交线,故应选B.
答案 B
纠错心得 确定几何体的三视图要正确把握投影方向,可结合正方体确定点线的投影位置,要学会区分三视图中的实虚线.
题型三 求空间几何体的表面积
例5 (1)一个多面体的三视图如图所示,则该多面体的表面积为( )
A.21+ B.18+
C.21 D.18
(2)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.
答案 (1)A (2)12
解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为
6×(4-)+2××()2=21+.故选A.
(2)设正六棱锥的高为h,侧面的斜高为h′.
由题意,得×6××2××h=2,
∴h=1,
∴斜高h′==2,
∴S侧=6××2×2=12.
【同步练习】1、如图所示的是一个几何体的三视图,则该几何体的表面积为____.
答案 26
解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S=S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+×2π×1=26.
1.多面体的表面积、侧面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱 圆锥 圆台
侧面展开图
侧面积公式 S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
名称 几何体 表面积 体积
柱体(棱柱和圆柱) S表面积=S侧+2S底 V=Sh
锥体(棱锥和圆锥) S表面积=S侧+S底 V=Sh
台体(棱台和圆台) S表面积=S侧+S上+S下 V=(S上+S下+)h
球 S=4πR2 V=πR3
【知识拓展】
1.与体积有关的几个结论
(1)一个组合体的体积等于它的各部分体积的和或差.
(2)底面面积及高都相等的两个同类几何体的体积相等.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则2R=a;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则2R=a.
(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.
(3)正四面体的外接球与内切球的半径之比为3∶1.
题型四 求空间几何体的体积
命题点1 求以三视图为背景的几何体的体积
例6 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )
A.+π B.+π
C.+π D.1+π
答案 C
解析 由三视图知,半球的半径R=,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V=×1×1×1+×π×3=+π,故选C.
命题点2 求简单几何体的体积
例7 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.若AB=6 m,PO1=2 m,则仓库的容积为________m3.
答案 312
解析 由PO1=2 m,知O1O=4PO1=8 m.因为A1B1=AB=6 m,所以正四棱锥P-A1B1C1D1的体积
V锥=·A1B·PO1=×62×2=24(m3);
正四棱柱ABCD-A1B1C1D1的体积
V柱=AB2·O1O=62×8=288(m3).
所以仓库的容积V=V锥+V柱=24+288=312(m3).
【同步练习】(1)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.
(2)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
A. B. C. D.
答案 (1) (2)A
解析 (1) 由题意可知,因为三棱锥每个面都是腰长为2的等腰三角形,由正视图可得俯视图(如图),且三棱锥高为h=1,则体积V=Sh=×(×2×1)×1=.
(2)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,
容易求得EG=HF=,
AG=GD=BH=HC=,
∴S△AGD=S△BHC=××1=,
∴V=VE-ADG+VF-BCH+VAGD-BHC=2VE-ADG+VAGD-BHC=×××2+×1=.故选A.
题型五 与球有关的切、接问题
例8 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )
A. B.2
C. D.3
答案 C
解析 如图所示,由球心作平面ABC的垂线,
则垂足为BC的中点M.
又AM=BC=,
OM=AA1=6,所以球O的半径R=OA= =.
引申探究
1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?
解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R,内切球的半径为r.
又正方体的棱长为4,故其体对角线长为4,
从而V外接球=πR3=π×(2)3=32π,
V内切球=πr3=π×23=.
2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?
解 正四面体的表面积为S1=4··a2=a2,其内切球半径r为正四面体高的,即r=·a=a,因此内切球表面积为S2=4πr2=,则==.
3.已知侧棱和底面边长都是3的正四棱锥,则其外接球的半径是多少?
解 依题意得,该正四棱锥的底面对角线的长为3×=6,高为 =3,
因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.
【同步练习】(1)在封闭的直三棱柱ABC—A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
(2)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A. B.16π C.9π D.
答案 (1)B (2)A
解析 (1)由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为.
(2) 如图,设球心为O,半径为r,
则在Rt△AOF中,(4-r)2+()2=r2,
解得r=,
∴该球的表面积为4πr2=4π×()2=π.
例9 如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,则此几何体的体积为________.
解析 用“补形法”把原几何体补成一个直三棱柱,使AA′=BB′=CC′=8,所以V几何体=V三棱柱=×S△ABC×AA′=×24×8=96.
答案 96
一、三视图问题的常见类型及解题策略
(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.
(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.
(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.
二、空间几何体表面积的求法
(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.
(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
(3)旋转体的表面积问题注意其侧面展开图的应用.
三、空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
四、空间几何体与球接、切问题的求解方法
(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.
1.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
A. B. C. D.1
答案 A
解析 由三视图知,三棱锥如图所示,由侧视图得高h=1,
又底面面积S=×1×1=.
所以体积V=Sh=.
2. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r等于( )
A.1 B.2
C.4 D.8
答案 B
解析 如图,该几何体是一个半球
与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.
3.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A.20π B.24π C.28π D.32π
答案 C
解析 由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l==4,所以圆锥的侧面积为S锥侧=×4π×4=8π,圆柱的侧面积S柱侧=4π×4=16π,所以组合体的表面积S=8π+16π+4π=28π,故选C.
4.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A.①② B.②③ C.②④ D.③④
答案 C
解析 由几何体的结构可知,只有圆锥、正四棱锥两个几何体的正视图和侧视图相同,且不与俯视图相同.
5.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
A.1 B. C. D.2
答案 C
解析 根据三视图,可知该几何体的直观图为如图所示的四棱锥V-ABCD,其中VB⊥平面ABCD,
且底面ABCD是边长为1的正方形,VB=1.所以四棱锥中最长棱为VD.连接BD,易知BD=,在Rt△VBD中,VD==.
6. 一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )
A.①② B.①③ C.③④ D.②④
答案 D
解析 由点A经正方体的表面,按最短路线爬行到达顶点C1位置,共有6种展开方式,若把平面ABB1A1和平面BCC1B1展开到同一个平面内,在矩形中连接AC1会经过BB1的中点,故此时的正视图为②.若把平面ABCD和平面CDD1C1展开到同一个平面内,在矩形中连接AC1会经过CD的中点,此时正视图会是④.其他几种展开方式对应的正视图在题中没有出现或者已在②④中,故选D.
7.已知某几何体的三视图如图所示,则该几何体的表面积等于________.
答案 64+32
解析 由三视图可知该几何体为直三棱柱截去一个三棱锥,
因为SB=4,AC=4,则其表面积等于4×8+×4×(8+4)+×4×(8+4)+×4×4+×4×4=64+32.
8. 如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.
答案 1
解析 设正方体的棱长为a,则三棱锥P-ABC的正视图与侧视图都是三角形,且面积都是a2,故面积的比值为1.
9. 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是下图中的________.(填出所有可能的序号)
答案 ①②③
解析 空间四边形D′OEF在平面DCC′D′上的投影是①,在平面BCC′B′上的投影是②,在平面ABCD上的投影是③,故填①②③.
10.某几何体的三视图如图所示.
(1)判断该几何体是什么几何体?
(2)画出该几何体的直观图.
解 (1)该几何体是一个正方体切掉两个圆柱后得到的几何体.
(2)直观图如图所示.
11.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.
解 如图,把几何体放到长方体中,
使得长方体的体对角线刚好为几何体的已知棱,则长方体的体对角线A1C=,则它的正视图投影长为A1B=,侧视图投影长为A1D=a,俯视图投影长为A1C1=b,则a2+b2+()2=2·()2,即a2+b2=8,又≤,当且仅当“a=b=2”时等号成立.所以a+b≤4,即a+b的最大值为4.
*12.已知正三棱锥V-ABC的正视图和俯视图如图所示.
(1)画出该正三棱锥的侧视图和直观图;
(2)求出侧视图的面积.
解 (1)如图.
(2)侧视图中VA= ==2,则S△VBC=×2×2=6.
13、某空间几何体的三视图如图所示,则该几何体的表面积为( )
A.12+4 B.18+8
C.28 D.20+8
答案 D
解析 由三视图可得该几何体是平放的直三棱柱,该直三棱柱的底面是腰长为2的等腰直角三角形、侧棱长为4,所以表面积为×2×2×2+4×2×2+4×2=20+8,故选D.
14、一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A. B.
C. D.(4+π)
答案 B
解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为.则V=··=.故选B.
15、在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A. B. C. D.2π
答案 C
解析 过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示,该几何体的体积为V=V圆柱-V圆锥=π·AB2·BC-·π·CE2·DE=π×12×2-π×12×1=,故选C.
16、一个四面体的三视图如图所示,则该四面体的表面积是( )
A.1+ B.2+
C.1+2 D.2
答案 B
解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S表=2××2×1+2××()2=2+,故选B.
17、某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )
A.π B.6π C.π D.π
答案 C
解析 该几何体是由半个圆柱和半个圆锥构成的组合体,所以V=×π×4×1+××π×4×2=π.故选C.
18、 如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )
A. B. C.2 D.1
答案 A
解析 由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为.∵ABC—A1B1C1为直三棱柱,∴平面ABC⊥平面BCC1B1,∴BC为截面圆的直径,∴∠BAC=90°.∵AB=AC,∴AB=1.∴侧面ABB1A1的面积为×1=.故选A.
19、某四棱柱的三视图如图所示,则该四棱柱的体积为________.
答案
解析 由三视图知该四棱柱为直四棱柱,
底面积S==,高h=1,
所以四棱柱体积V=S·h=×1=.
20.已知四面体ABCD满足AB=CD=,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.
答案 7π
解析 (图略)在四面体ABCD中,取线段CD的中点为E,连接AE,BE.∵AC=AD=BC=BD=2,∴AE⊥CD,BE⊥CD.在Rt△AED中,CD=,∴AE=.同理BE=.取AB的中点为F,连接EF.由AE=BE,得EF⊥AB.在Rt△EFA中,∵AF=AB=,AE=,∴EF=1.取EF的中点为O,连接OA,则OF=.在Rt△OFA中,OA=.∵OA=OB=OC=OD,∴该四面体的外接球的半径是,∴外接球的表面积是7π.
21、已知某几何体的三视图如图所示,则该几何体的体积为________.
答案 3π
解析 方法一 由三视图可知,
此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的,所以V=×π×12×4=3π.
方法二 由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的,直观图如图(1)所示,我们可用两个大小与形状完全相同的该几何体补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V=×π×12×6=3π.
22.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的体积与球O的体积的比值为________.
答案
解析 设等边三角形的边长为2a,球O的半径为R,
则V圆锥=·πa2·a=πa3.
又R2=a2+(a-R)2,所以R=a,
故V球=·(a)3=a3,
则其体积比为.
23.已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.
解 (1)由三视图知该几何体是由一个圆锥加一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=(2πa)·(a)=πa2,
S圆柱侧=(2πa)·(2a)=4πa2,
S圆柱底=πa2,
所以S表=πa2+4πa2+πa2=(+5)πa2.
(2)沿P点与Q点所在母线剪开圆柱侧面,如图.
则PQ===a,
所以从P点到Q点在侧面上的最短路径长为a.1、将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )
某几何体的三视图如图所示(单位:cm),
则该几何体的体积为________cm3,表面积为________cm2.
3、已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )
A.1 cm B.2 cm
C.3 cm D. cm
4、体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )
A.12π B.π
C.8π D.4π
5、某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.
如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为______.
无
题型一 简单几何体的三视图
命题点1 已知几何体,识别三视图
例1 如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是( )
命题点2 已知三视图,判断几何体的形状
例2 如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是( )
A.17π B.18π C.20π D.28π
命题点3 已知三视图中的两个视图,判断第三个视图
例3 一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )
【同步练习】
1、如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )
A.18+36 B.54+18
C.90 D.81
(2)如图是一几何体的直观图、正视图和俯视图,
则该几何体的侧视图为( )
题型二 空间几何的三视图
例4 将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )
题型三 求空间几何体的表面积
例5 (1)一个多面体的三视图如图所示,则该多面体的表面积为( )
A.21+ B.18+
C.21 D.18
(2)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.
【同步练习】1、如图所示的是一个几何体的三视图,
则该几何体的表面积为____.
1.多面体的表面积、侧面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱 圆锥 圆台
侧面展开图
侧面积公式 S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
名称 几何体 表面积 体积
柱体(棱柱和圆柱) S表面积=S侧+2S底 V=Sh
锥体(棱锥和圆锥) S表面积=S侧+S底 V=Sh
台体(棱台和圆台) S表面积=S侧+S上+S下 V=(S上+S下+)h
球 S=4πR2 V=πR3
【知识拓展】
1.与体积有关的几个结论
(1)一个组合体的体积等于它的各部分体积的和或差.
(2)底面面积及高都相等的两个同类几何体的体积相等.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则2R=a;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则2R=a.
(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.
(3)正四面体的外接球与内切球的半径之比为3∶1.
题型四 求空间几何体的体积
命题点1 求以三视图为背景的几何体的体积
例6 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )
A.+π B.+π
C.+π D.1+π
命题点2 求简单几何体的体积
例7 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.若AB=6 m,PO1=2 m,则仓库的容积为________m3.
【同步练习】(1)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.
(2)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
A. B. C. D.
题型五 与球有关的切、接问题
例8 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )
A. B.2
C. D.3
引申探究
1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?
2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?
3.已知侧棱和底面边长都是3的正四棱锥,则其外接球的半径是多少?
【同步练习】(1)在封闭的直三棱柱ABC—A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
(2)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A. B.16π C.9π D.
例9 如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,
BD=3,FC=4,AE=5,则此几何体的体积为________.
一、三视图问题的常见类型及解题策略
(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.
(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.
(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.
二、空间几何体表面积的求法
(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.
(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
(3)旋转体的表面积问题注意其侧面展开图的应用.
三、空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
四、空间几何体与球接、切问题的求解方法
(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.
1.某三棱锥的三视图如图所示,则该三棱锥的体积为( )
A. B. C. D.1
2. 圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r等于( )
A.1 B.2
C.4 D.8
3.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A.20π B.24π C.28π D.32π
4.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A.①② B.②③ C.②④ D.③④
5.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )
A.1 B. C. D.2
6. 一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是( )
A.①② B.①③ C.③④ D.②④
7.已知某几何体的三视图如图所示,则该几何体的表面积等于________.
8. 如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.
9. 如图所示,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是下图中的________.(填出所有可能的序号)
10.某几何体的三视图如图所示.
(1)判断该几何体是什么几何体?
(2)画出该几何体的直观图.
11.某几何体的一条棱长为,在该几何体的正视图中,这条棱的投影是长为的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,求a+b的最大值.
*12.已知正三棱锥V-ABC的正视图和俯视图如图所示.
(1)画出该正三棱锥的侧视图和直观图;
(2)求出侧视图的面积.
13、某空间几何体的三视图如图所示,则该几何体的表面积为( )
A.12+4 B.18+8
C.28 D.20+8
14、一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A. B.
C. D.(4+π)
15、在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A. B. C. D.2π
16、一个四面体的三视图如图所示,则该四面体的表面积是( )
A.1+ B.2+
C.1+2 D.2
17、某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )
A.π B.6π C.π D.π
18、 如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )
A. B. C.2 D.1
19、某四棱柱的三视图如图所示,则该四棱柱的体积为________.
20.已知四面体ABCD满足AB=CD=,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.
21、已知某几何体的三视图如图所示,则该几何体的体积为________.
22.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的体积与球O的体积的比值为________.
23.已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)多面体的表面积等于各个面的面积之和.( √ )
(2)锥体的体积等于底面积与高之积.( × )
(3)球的体积之比等于半径比的平方.( × )
(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ )
(5)长方体既有外接球又有内切球.( × )
(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × )
1.多面体的表面积、侧面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱 圆锥 圆台
侧面展开图
侧面积公式 S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
名称 几何体 表面积 体积
柱体(棱柱和圆柱) S表面积=S侧+2S底 V=Sh
锥体(棱锥和圆锥) S表面积=S侧+S底 V=Sh
台体(棱台和圆台) S表面积=S侧+S上+S下 V=(S上+S下+)h
球 S=4πR2 V=πR3
题型一 求空间几何体的表面积
例1 (1)(2016·淮北模拟)一个多面体的三视图如图所示,则该多面体的表面积为( )
A.21+ B.18+
C.21 D.18
(2)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.
答案 (1)A (2)12
解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为
6×(4-)+2××()2=21+.故选A.
(2)设正六棱锥的高为h,侧面的斜高为h′.
由题意,得×6××2××h=2,
∴h=1,
∴斜高h′==2,
∴S侧=6××2×2=12.
思维升华 空间几何体表面积的求法
(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.
(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
(3)旋转体的表面积问题注意其侧面展开图的应用.
(2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为____.
答案 26
解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S=S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+×2π×1=26.
题型二 求空间几何体的体积
命题点1 求以三视图为背景的几何体的体积
例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )
A.+π B.+π
C.+π D.1+π
答案 C
解析 由三视图知,半球的半径R=,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V=×1×1×1+×π×3=+π,故选C.
命题点2 求简单几何体的体积
例3 (2016·江苏改编) 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.若AB=6 m,PO1=2 m,则仓库的容积为________m3.
答案 312
解析 由PO1=2 m,知O1O=4PO1=8 m.因为A1B1=AB=6 m,所以正四棱锥P-A1B1C1D1的体积
V锥=·A1B·PO1=×62×2=24(m3);
正四棱柱ABCD-A1B1C1D1的体积
V柱=AB2·O1O=62×8=288(m3).
所以仓库的容积V=V锥+V柱=24+288=312(m3).
思维升华 空间几何体体积问题的常见类型及解题策略
(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.
(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.
(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.
(1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.
(2)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
A. B. C. D.
答案 (1) (2)A
解析 (1) 由题意可知,因为三棱锥每个面都是腰长为2的等腰三角形,由正视图可得俯视图(如图),且三棱锥高为h=1,则体积V=Sh=×(×2×1)×1=.
(2)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,
容易求得EG=HF=,
AG=GD=BH=HC=,
∴S△AGD=S△BHC=××1=,
∴V=VE-ADG+VF-BCH+VAGD-BHC=2VE-ADG+VAGD-BHC=×××2+×1=.故选A.
题型三 与球有关的切、接问题
例4 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )
A. B.2
C. D.3
答案 C
解析 如图所示,由球心作平面ABC的垂线,
则垂足为BC的中点M.
又AM=BC=,
OM=AA1=6,所以球O的半径R=OA= =.
引申探究
1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?
解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R,内切球的半径为r.
又正方体的棱长为4,故其体对角线长为4,
从而V外接球=πR3=π×(2)3=32π,
V内切球=πr3=π×23=.
2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?
解 正四面体的表面积为S1=4··a2=a2,其内切球半径r为正四面体高的,即r=·a=a,因此内切球表面积为S2=4πr2=,则==.
3.已知侧棱和底面边长都是3的正四棱锥,则其外接球的半径是多少?
解 依题意得,该正四棱锥的底面对角线的长为3×=6,高为 =3,
因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.
思维升华 空间几何体与球接、切问题的求解方法
(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.
(1)(2016·全国丙卷)在封闭的直三棱柱ABC—A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
(2)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A. B.16π C.9π D.
答案 (1)B (2)A
解析 (1)由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为.
(2) 如图,设球心为O,半径为r,
则在Rt△AOF中,(4-r)2+()2=r2,
解得r=,
∴该球的表面积为4πr2=4π×()2=π.
17.巧用补形法解决立体几何问题
典例 (2016·青岛模拟) 如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,则此几何体的体积为________.
思想方法指导 解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等.
解析 用“补形法”把原几何体补成一个直三棱柱,使AA′=BB′=CC′=8,所以V几何体=V三棱柱=×S△ABC×AA′=×24×8=96.
答案 96
1.与体积有关的几个结论
(1)一个组合体的体积等于它的各部分体积的和或差.
(2)底面面积及高都相等的两个同类几何体的体积相等.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则2R=a;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则2R=a.
(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.
(3)正四面体的外接球与内切球的半径之比为3∶1.
1.(2017·合肥质检)某空间几何体的三视图如图所示,则该几何体的表面积为( )
A.12+4 B.18+8
C.28 D.20+8
答案 D
解析 由三视图可得该几何体是平放的直三棱柱,该直三棱柱的底面是腰长为2的等腰直角三角形、侧棱长为4,所以表面积为×2×2×2+4×2×2+4×2=20+8,故选D.
2.(2016·大同模拟)一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A. B.
C. D.(4+π)
答案 B
解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为.则V=··=.故选B.
3.(2015·山东)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A. B. C. D.2π
答案 C
解析 过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示,该几何体的体积为V=V圆柱-V圆锥=π·AB2·BC-·π·CE2·DE=π×12×2-π×12×1=,故选C.
4.(2015·安微)一个四面体的三视图如图所示,则该四面体的表面积是( )
A.1+ B.2+
C.1+2 D.2
答案 B
解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S表=2××2×1+2××()2=2+,故选B.
5.(2016·广东东莞一中、松山湖学校联考)某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )
A.π B.6π C.π D.π
答案 C
解析 该几何体是由半个圆柱和半个圆锥构成的组合体,所以V=×π×4×1+××π×4×2=π.故选C.
6.(2016·福建三明一中第二次月考) 如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )
A. B. C.2 D.1
答案 A
解析 由题意知,球心在正方形的中心上,球的半径为1,则正方形的边长为.∵ABC—A1B1C1为直三棱柱,∴平面ABC⊥平面BCC1B1,∴BC为截面圆的直径,∴∠BAC=90°.∵AB=AC,∴AB=1.∴侧面ABB1A1的面积为×1=.故选A.
7.(2016·北京)某四棱柱的三视图如图所示,则该四棱柱的体积为________.
答案
解析 由三视图知该四棱柱为直四棱柱,
底面积S==,高h=1,
所以四棱柱体积V=S·h=×1=.
8.已知四面体ABCD满足AB=CD=,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.
答案 7π
解析 (图略)在四面体ABCD中,取线段CD的中点为E,连接AE,BE.∵AC=AD=BC=BD=2,∴AE⊥CD,BE⊥CD.在Rt△AED中,CD=,∴AE=.同理BE=.取AB的中点为F,连接EF.由AE=BE,得EF⊥AB.在Rt△EFA中,∵AF=AB=,AE=,∴EF=1.取EF的中点为O,连接OA,则OF=.在Rt△OFA中,OA=.∵OA=OB=OC=OD,∴该四面体的外接球的半径是,∴外接球的表面积是7π.
9.(2016·武汉模拟)已知某几何体的三视图如图所示,则该几何体的体积为________.
答案 3π
解析 方法一 由三视图可知,
此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的,所以V=×π×12×4=3π.
方法二 由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的,直观图如图(1)所示,我们可用两个大小与形状完全相同的该几何体补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V=×π×12×6=3π.
10.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的体积与球O的体积的比值为________.
答案
解析 设等边三角形的边长为2a,球O的半径为R,
则V圆锥=·πa2·a=πa3.
又R2=a2+(a-R)2,所以R=a,
故V球=·(a)3=a3,
则其体积比为.
11.已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.
解 (1)由三视图知该几何体是由一个圆锥加一个圆柱组成的,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=(2πa)·(a)=πa2,
S圆柱侧=(2πa)·(2a)=4πa2,
S圆柱底=πa2,
所以S表=πa2+4πa2+πa2=(+5)πa2.
(2)沿P点与Q点所在母线剪开圆柱侧面,如图.
则PQ===a,
所以从P点到Q点在侧面上的最短路径长为a.
12.(2016·全国丙卷) 如图,四棱锥P—ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求四面体NBCM的体积.
(1)证明 由已知得AM=AD=2.
如图,取BP的中点T,连接AT,TN,由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綊AM,所以四边形AMNT为平行四边形,于是MN∥AT.
因为AT 平面PAB,MN 平面PAB,
所以MN∥平面PAB.
(2)解 因为PA⊥平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.
取BC的中点E,连接AE.
由AB=AC=3得AE⊥BC,AE==.
由AM∥BC得M到BC的距离为,
故S△BCM=×4×=2.
所以四面体NBCM的体积VN-BCM=×S△BCM×=.
*13.(2017·浙江七校联考)如图所示,在空间几何体ADE-BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.
(1)试确定点M 的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM-BCF的体积之比.
解 (1) 当M是线段AE的中点时,AC∥平面MDF.
理由如下:
连接CE交DF于点N,连接MN.因为M,N分别是AE,CE的中点,所以MN∥AC.又因为MN 平面MDF,AC 平面MDF,所以AC∥平面MDF.
(2)将几何体ADE-BCF补成三棱柱ADE-B′CF,如图所示,
三棱柱ADE-B′CF的体积为V=S△ADE·CD=×2×2×4=8,则几何体ADE-BCF的体积VADE-BCF=VADE-B′CF-VF-BB′C=8-××2=.
因为三棱锥M-DEF的体积
VM-DEF=××1=,
所以VADM-BCF=-=,
所以两几何体的体积之比为∶=1∶4.
1.(教材改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )
A.1 cm B.2 cm
C.3 cm D. cm
答案 B
解析 S表=πr2+πrl=πr2+πr·2r=3πr2=12π,
∴r2=4,∴r=2 cm.
2.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )
A.12π B.π
C.8π D.4π
答案 A
解析 由题意可知正方体的棱长为2,其体对角线2即为球的直径,所以球的表面积为4πR2=(2R)2π=12π,故选A.
3.(2016·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.
答案 80 40
解析 由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的棱长为2 cm,下面长方体的底面边长为4 cm,高为2 cm,其直观图如图所示,
其表面积S=6×22+2×42+4×2×4-2×22=80(cm2),体积V=2×2×2+4×4×2=40(cm3).
4. 如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为______.
答案
解析 设点P到平面ABC,平面A1B1C1的距离分别为h1,h2,则棱柱的高为h=h1+h2,又记S=S△ABC=,则三棱柱的体积为V=Sh=1.而从三棱柱中去掉四棱锥P-ACC1A1的剩余体积为V′=VP-ABC+=Sh1+Sh2=S(h1+h2)=,从而=V-V′=1-=.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)多面体的表面积等于各个面的面积之和.( )
(2)锥体的体积等于底面积与高之积.( )
(3)球的体积之比等于半径比的平方.( )
(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )
(5)长方体既有外接球又有内切球.( )
(6)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( )
1.多面体的表面积、侧面积
因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱 圆锥 圆台
侧面展开图
侧面积公式 S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l
3.柱、锥、台和球的表面积和体积
名称 几何体 表面积 体积
柱体(棱柱和圆柱) S表面积=S侧+2S底 V=Sh
锥体(棱锥和圆锥) S表面积=S侧+S底 V=Sh
台体(棱台和圆台) S表面积=S侧+S上+S下 V=(S上+S下+)h
球 S=4πR2 V=πR3
题型一 求空间几何体的表面积
例1 (1)一个多面体的三视图如图所示,则该多面体的表面积为( )
A.21+ B.18+
C.21 D.18
(2)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.
如图所示的是一个几何体的三视图,则该几何体的表面积为____.
题型二 求空间几何体的体积
命题点1 求以三视图为背景的几何体的体积
例2 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )
A.+π B.+π
C.+π D.1+π
命题点2 求简单几何体的体积
例3 现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P-A1B1C1D1,下部的形状是正四棱柱ABCD-A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.若AB=6 m,PO1=2 m,则仓库的容积为________m3.
(1)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.
(2)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )
A. B. C. D.
题型三 与球有关的切、接问题
例4 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )
A. B.2
C. D.3
引申探究
1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?
2.已知棱长为a的正四面体,则此正四面体的表面积S1与其内切球的表面积S2的比值为多少?
3.已知侧棱和底面边长都是3的正四棱锥,则其外接球的半径是多少?
(1)在封闭的直三棱柱ABC—A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )
A.4π B. C.6π D.
(2)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )
A. B.16π C.9π D.
17.巧用补形法解决立体几何问题
典例 如图,在△ABC中,AB=8,BC=10,AC=6,DB⊥平面ABC,且AE∥FC∥BD,BD=3,FC=4,AE=5,则此几何体的体积为________.
1.与体积有关的几个结论
(1)一个组合体的体积等于它的各部分体积的和或差.
(2)底面面积及高都相等的两个同类几何体的体积相等.
2.几个与球有关的切、接常用结论
(1)正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则2R=a;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则2R=a.
(2)若长方体的同一顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.
(3)正四面体的外接球与内切球的半径之比为3∶1.
1.某空间几何体的三视图如图所示,则该几何体的表面积为( )
A.12+4 B.18+8
C.28 D.20+8
2.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )
A. B.
C. D.(4+π)
3.在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
A. B. C. D.2π
4.一个四面体的三视图如图所示,则该四面体的表面积是( )
A.1+ B.2+
C.1+2 D.2
5.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )
A.π B.6π C.π D.π
6.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为( )
A. B. C.2 D.1
7.某四棱柱的三视图如图所示,则该四棱柱的体积为________.
8.已知四面体ABCD满足AB=CD=,AC=AD=BC=BD=2,则四面体ABCD的外接球的表面积是________.
9.已知某几何体的三视图如图所示,则该几何体的体积为________.
10.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的体积与球O的体积的比值为________.
11.已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.
12.如图,四棱锥P—ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明:MN∥平面PAB;
(2)求四面体NBCM的体积.
*13.如图所示,在空间几何体ADE-BCF中,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.
(1)试确定点M 的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,平面MDF将几何体ADE-BCF分成两部分,求空间几何体M-DEF与空间几何体ADM-BCF的体积之比.
1.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为( )
A.1 cm B.2 cm
C.3 cm D. cm
2.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )
A.12π B.π
C.8π D.4π
3.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.
4. 如图,三棱柱ABC-A1B1C1的体积为1,P为侧棱B1B上的一点,则四棱锥P-ACC1A1的体积为______.8.3点、直线、平面的关系-教师版
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( √ )
(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( × )
(3)两个平面ABC与DBC相交于线段BC.( × )
(4)经过两条相交直线,有且只有一个平面.( √ )
(5)没有公共点的两条直线是异面直线.( × )
1.四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
2.直线与直线的位置关系
(1)位置关系的分类
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
②范围:.
3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.
4.平面与平面的位置关系有平行、相交两种情况.
5.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
题型一 平面基本性质的应用
例1 (1)(·山东)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a和直线b可能平行或异面或相交,故选A.
(2)已知,空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:
①E、F、G、H四点共面;
②三直线FH、EG、AC共点.
证明 ①连接EF、GH,如图所示,
∵E、F分别是AB、AD的中点,
∴EF∥BD.
又∵CG=BC,CH=DC,
∴GH∥BD,∴EF∥GH,
∴E、F、G、H四点共面.
②易知FH与直线AC不平行,但共面,
∴设FH∩AC=M,∴M∈平面EFHG,M∈平面ABC.
又∵平面EFHG∩平面ABC=EG,
∴M∈EG,∴FH、EG、AC共点.
思维升华 共面、共线、共点问题的证明
(1)证明点或线共面问题的两种方法:①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.
(2)证明点共线问题的两种方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.
(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.
如图,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:
(1)E、C、D1、F四点共面;
(2)CE,D1F,DA三线共点.
证明 (1)如图,连接EF,CD1,A1B.
∵E,F分别是AB,AA1的中点,∴EF∥A1B.
又A1B∥D1C,∴EF∥CD1,
∴E、C、D1、F四点共面.
(2)∵EF∥CD1,EF∴CE与D1F必相交,
设交点为P,如图所示.
则由P∈CE,CE 平面ABCD,得P∈平面ABCD.
同理P∈平面ADD1A1.
又平面ABCD∩平面ADD1A1=DA,
∴P∈直线DA.∴CE,D1F,DA三线共点.
题型二 判断空间两直线的位置关系
例2 (1)(·广东)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A.l与l1,l2都不相交
B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交
D.l至少与l1,l2中的一条相交
(2) 如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )
A.MN与CC1垂直
B.MN与AC垂直
C.MN与BD平行
D.MN与A1B1平行
(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)
答案 (1)D (2)D (3)②④
解析 (1)若l与l1,l2都不相交,则l∥l1,l∥l2,∴l1∥l2,这与l1和l2异面矛盾,∴l至少与l1,l2中的一条相交.
(2) 连接B1C,B1D1,如图所示,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,
又BD∥B1D1,∴MN∥BD.
∵CC1⊥B1D1,AC⊥B1D1,
∴MN⊥CC1,MN⊥AC.
又∵A1B1与B1D1相交,
∴MN与A1B1不平行,故选D.
(3)图①中,直线GH∥MN;
图②中,G、H、N三点共面,但M 平面GHN,
因此直线GH与MN异面;
图③中,连接MG,GM∥HN,因此GH与MN共面;
图④中,G、M、N共面,但H 平面GMN,
因此GH与MN异面.
所以图②④中GH与MN异面.
思维升华 空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.对于异面直线,可采用直接法或反证法;对于平行直线,可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;对于垂直关系,往往利用线面垂直的性质来解决.
(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )
A.0 B.1 C.2 D.3
(2)(·南昌一模)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( )
A.a与b异面,b与c异面 a与c异面
B.a与b相交,b与c相交 a与c相交
C.α∥β,β∥γ α∥γ
D.a α,b β,α与β相交 a与b相交
答案 (1)B (2)C
解析 (1)在空间中,若a⊥b,a⊥c,则b,c可能平行,也可能相交,还可能异面,所以①②错,③显然成立.
(2)如图(1),在正方体中,a、b、c是三条棱所在直线,满足a与b异面,b与c异面,但a∩c=A,故A错误;在图(2)的正方体中,满足a与b相交,b与c相交,但a与c不相交,故B错误;如图(3),α∩β=c,a∥c,则a与b不相交,故D错误.
题型三 求两条异面直线所成的角
例3 (·重庆模拟) 如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.
答案
解析 如图,将原图补成正方体ABCD-QGHP,连接GP,则GP∥BD,
所以∠APG为异面直线AP与BD所成的角,
在△AGP中,AG=GP=AP,
所以∠APG=.
引申探究
在本例条件下,若E,F,M分别是AB,BC,PQ的中点,异面直线EM与AF所成的角为θ,求cos θ的值.
解 设N为BF的中点,连接EN,MN,
则∠MEN是异面直线EM与AF所成的角或其补角.
不妨设正方形ABCD和ADPQ的边长为4,
则EN=,EM=2,MN=.
在△MEN中,由余弦定理得
cos∠MEN=
=
=-=-.
即cos θ=.
思维升华 用平移法求异面直线所成的角的三步法
(1)一作:根据定义作平行线,作出异面直线所成的角;
(2)二证:证明作出的角是异面直线所成的角;
(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.
(·杭州第一次质检) 如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=CD=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD的内部(含边界),则点M的轨迹的最大长度等于________;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成的角的余弦值等于________.
答案
解析 当平面ABC⊥平面BCD时,点A在平面BCD上的射影为BC的中点M,
当点A在平面BCD上的射影M在BD上时,因为AB=AC,所以BM=MC,因为BC=CD=3,所以∠DBC=30°,所以由∠BCD=90°得BM=MD,点M的轨迹的最大长度等于CD=,将其补为四棱锥,所以AB=,AE==,又因为∠EBA为直线AB和CD所成的角,所以cos∠EBA==.
18.构造模型判断空间线面位置关系
典例 已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中所有正确的命题是________.(填序号)
思想方法指导 本题可通过构造模型法完成,构造法实质上是结合题意构造符合题意的直观模型,然后将问题利用模型直观地作出判断,这样减少了抽象性,避免了因考虑不全面而导致解题错误.对于线面、面面平行、垂直的位置关系的判定,可构造长方体或正方体化抽象为直观去判断.
解析 借助于长方体模型来解决本题,对于①,可以得到平面α、β互相垂直,如图(1)所示,故①正确;对于②,平面α、β可能垂直,如图(2)所示,故②不正确;对于③,平面α、β可能垂直,如图(3)所示,故③不正确;对于④,由m⊥α,α∥β可得m⊥β,因为n∥β,所以过n作平面γ,且γ∩β=g,如图(4)所示,所以n与交线g平行,因为m⊥g,所以m⊥n,故④正确.
答案 ①④
1.唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
(4)过平面外一点有且只有一条直线与已知平面垂直.
2.异面直线的判定定理
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
1.设a,b是两条不同的直线,α,β是两个不同的平面,a α,b⊥β,则“α∥β”是“a⊥b”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 若a α,b⊥β,α∥β,则由α∥β,b⊥β b⊥α,
又a α,所以a⊥b;若a⊥b,a α,b⊥β,
则b⊥α或b∥α或b α,此时α∥β或α与β相交,
所以“α∥β”是“a⊥b”的充分不必要条件,故选A.
2.(·福州质检)在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线( )
A.不存在 B.有且只有两条
C.有且只有三条 D.有无数条
答案 D
解析 在EF上任意取一点M,直线A1B1与M确定一个平面,这个平面与BC有且仅有1个交点N,
当M的位置不同时确定不同的平面,从而与BC有不同的交点N,而直线MN与A1B1、EF、BC分别有交点P、M、N,如图,故有无数条直线与直线A1B1、EF、BC都相交.
3.对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )
A.平行 B.相交
C.垂直 D.互为异面直线
答案 C
解析 不论l∥α,l α,还是l与α相交,α内都有直线m使得m⊥l.
4.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )
A.M一定在直线AC上
B.M一定在直线BD上
C.M可能在AC上,也可能在BD上
D.M既不在AC上,也不在BD上
答案 A
解析 由于EF∩HG=M,且EF 平面ABC,
HG 平面ACD,所以点M为平面ABC与平面ACD的一个公共点,而这两个平面的交线为AC,
所以点M一定在直线AC上,故选A.
5.设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是( )
A.(0,) B.(0,)
C.(1,) D.(1,)
答案 A
解析 此题相当于一个正方形沿着对角线折成一个四面体,长为a的棱长一定大于0且小于.故选A.
6.(·宁波二模)下列命题中,正确的是( )
A.若a,b是两条直线,α,β是两个平面,且a α,b β,则a,b是异面直线
B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面
C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行
D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条
答案 D
解析 对于A,当α∥β,a,b分别为第三个平面γ与α,β的交线时,由面面平行的性质可知a∥b,故A错误.
对于B,设a,b确定的平面为α,显然a α,故B错误.
对于C,当a α时,直线a与平面α内的无数条直线都平行,故C错误.易知D正确.故选D.
7.(·昆明模拟)若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.
答案 24
解析 如图,
若要出现所成角为60°的异面直线,则直线需为面对角线,以AC为例,与之构成黄金异面直线对的直线有4条,分别是A′B,BC′,A′D,C′D,正方形的面对角线有12条,所以所求的“黄金异面直线对”共有=24对(每一对被计算两次,所以要除以2).
8.(·南昌高三期末) 如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值为________.
答案 5
解析 连接A1B,将△A1BC1与△CBC1同时展开形成一个平面四边形A1BCC1,则此时对角线CP+PA1=A1C达到最小,在等腰直角三角形△BCC1中,BC1=2,∠CC1B=45°,在△A1BC1中,A1B==2,A1C1=6,BC1=2,∴A1C+BC=A1B2,即∠A1C1B=90°.对于展开形成的四边形A1BCC1,在△A1C1C中,C1C=,A1C1=6,∠A1C1C=135°,由余弦定理有,CP+PA1=A1C===5.
9. 如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
①GH与EF平行;
②BD与MN为异面直线;
③GH与MN成60°角;
④DE与MN垂直.
以上四个命题中,正确命题的序号是________.
答案 ②③④
解析 把正四面体的平面展开图还原,如图所示,
GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.
10.(·浙江)如图,三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.
答案
解析 如图所示,连接DN,取线段DN的中点K,连接MK,CK.
∵M为AD的中点,
∴MK∥AN,
∴∠KMC为异面直线AN,CM所成的角.
∵AB=AC=BD=CD=3,AD=BC=2,
N为BC的中点,
由勾股定理求得AN=DN=CM=2,
∴MK=.
在Rt△CKN中,CK==.
在△CKM中,由余弦定理,得
cos∠KMC=
==.
*11.(·郑州质量预测) 如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是________.
①BM是定值;
②点M在某个球面上运动;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE.
答案 ③
解析 取DC中点F,连接MF,BF,MF∥A1D且MF=A1D,FB∥ED且FB=ED,所以∠MFB=∠A1DE.由余弦定理可得MB2=MF2+FB2-2MF·FB·cos∠MFB是定值,所以M是在以B为圆心,MB为半径的球上,可得①②正确;由MF∥A1D与FB∥ED可得平面MBF∥平面A1DE,可得④正确;A1C在平面ABCD中的投影与AC重合,AC与DE不垂直,可得③不正确.
12. 如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.
解 如图所示,取AC的中点F,连接EF,BF,
在△ACD中,E、F分别是AD、AC的中点,
∴EF∥CD.
∴∠BEF或其补角即为异面直线BE与CD所成的角.
在Rt△EAB中,AB=AC=1,AE=AD=,
∴BE=.
在Rt△EAF中,AF=AC=,AE=,
∴EF=.
在Rt△BAF中,AB=1,AF=,∴BF=.
在等腰三角形EBF中,cos∠FEB===.
∴异面直线BE与CD所成角的余弦值为.
*13.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
(1)D、B、F、E四点共面;
(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
证明 (1) 如图所示,因为EF是△D1B1C1的中位线,
所以EF∥B1D1.
在正方体ABCD-A1B1C1D1中,B1D1∥BD,
所以EF∥BD.
所以EF,BD确定一个平面.
即D、B、F、E四点共面.
(2)在正方体ABCD-A1B1C1D1中,
设平面A1ACC1确定的平面为α,
又设平面BDEF为β.
因为Q∈A1C1,所以Q∈α.
又Q∈EF,所以Q∈β.
则Q是α与β的公共点,
同理,P点也是α与β的公共点.
所以α∩β=PQ.
又A1C∩β=R,
所以R∈A1C,则R∈α且R∈β.
则R∈PQ,故P,Q,R三点共线.
1.下列命题正确的个数为( )
①梯形可以确定一个平面;
②若两条直线和第三条直线所成的角相等,则这两条直线平行;
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合.
A.0 B.1 C.2 D.3
答案 C
解析 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.
2.(·浙江)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )
A.m∥l B.m∥n
C.n⊥l D.m⊥n
答案 C
解析 由已知,α∩β=l,∴l β,又∵n⊥β,∴n⊥l,C正确.
3.已知a,b是异面直线,直线c平行于直线a,那么c与b( )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
答案 C
解析 由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.
4. (教材改编)如图所示,已知在长方体ABCD-EFGH中,AB=2,AD=2,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.
答案 45° 60°
解析 ∵BC与EG所成的角等于EG与FG所成的角即∠EGF,tan∠EGF===1,∴∠EGF=45°,
∵AE与BG所成的角等于BF与BG所成的角即∠GBF,tan∠GBF===,∴∠GBF=60°.8.3点、直线、平面的关系-学生版
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.( )
(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.( )
(3)两个平面ABC与DBC相交于线段BC.( )
(4)经过两条相交直线,有且只有一个平面.( )
(5)没有公共点的两条直线是异面直线.( )
1.四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
2.直线与直线的位置关系
(1)位置关系的分类
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).
②范围:.
3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.
4.平面与平面的位置关系有平行、相交两种情况.
5.等角定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
题型一 平面基本性质的应用
例1 (1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(2)已知,空间四边形ABCD(如图所示),E、F分别是AB、AD的中点,G、H分别是BC、CD上的点,且CG=BC,CH=DC.求证:
①E、F、G、H四点共面;
②三直线FH、EG、AC共点.
如图,正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:
(1)E、C、D1、F四点共面;
(2)CE,D1F,DA三线共点.
题型二 判断空间两直线的位置关系
例2 (1)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )
A.l与l1,l2都不相交
B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交
D.l至少与l1,l2中的一条相交
(2) 如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列判断错误的是( )
A.MN与CC1垂直
B.MN与AC垂直
C.MN与BD平行
D.MN与A1B1平行
(3)在图中,G、N、M、H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)
(1)已知a,b,c为三条不重合的直线,有下列结论:①若a⊥b,a⊥c,则b∥c;②若a⊥b,a⊥c,则b⊥c;③若a∥b,b⊥c,则a⊥c.其中正确的个数为( )
A.0 B.1 C.2 D.3
(2)已知a、b、c是相异直线,α、β、γ是相异平面,则下列命题中正确的是( )
A.a与b异面,b与c异面 a与c异面
B.a与b相交,b与c相交 a与c相交
C.α∥β,β∥γ α∥γ
D.a α,b β,α与β相交 a与b相交
题型三 求两条异面直线所成的角
例3 (·重庆模拟) 如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.
如图,△ABC是等腰直角三角形,AB=AC,∠BCD=90°,且BC=CD=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若点M在△BCD的内部(含边界),则点M的轨迹的最大长度等于________;在翻折过程中,当点M位于线段BD上时,直线AB和CD所成的角的余弦值等于________.
18.构造模型判断空间线面位置关系
典例 已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:
①若m⊥α,n⊥β,m⊥n,则α⊥β;
②若m∥α,n∥β,m⊥n,则α∥β;
③若m⊥α,n∥β,m⊥n,则α∥β;
④若m⊥α,n∥β,α∥β,则m⊥n.
其中所有正确的命题是________.(填序号)
1.唯一性定理
(1)过直线外一点有且只有一条直线与已知直线平行.
(2)过直线外一点有且只有一个平面与已知直线垂直.
(3)过平面外一点有且只有一个平面与已知平面平行.
(4)过平面外一点有且只有一条直线与已知平面垂直.
2.异面直线的判定定理
经过平面内一点的直线与平面内不经过该点的直线互为异面直线.
1.设a,b是两条不同的直线,α,β是两个不同的平面,a α,b⊥β,则“α∥β”是“a⊥b”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.在三棱柱ABC-A1B1C1中,E、F分别为棱AA1、CC1的中点,则在空间中与直线A1B1、EF、BC都相交的直线( )
A.不存在 B.有且只有两条
C.有且只有三条 D.有无数条
3.对于任意的直线l与平面α,在平面α内必有直线m,使m与l( )
A.平行 B.相交
C.垂直 D.互为异面直线
4.在四面体ABCD的棱AB,BC,CD,DA上分别取E,F,G,H四点,如果EF与HG交于点M,则( )
A.M一定在直线AC上
B.M一定在直线BD上
C.M可能在AC上,也可能在BD上
D.M既不在AC上,也不在BD上
5.设四面体的六条棱的长分别为1,1,1,1,和a,且长为a的棱与长为的棱异面,则a的取值范围是( )
A.(0,) B.(0,)
C.(1,) D.(1,)
6.下列命题中,正确的是( )
A.若a,b是两条直线,α,β是两个平面,且a α,b β,则a,b是异面直线
B.若a,b是两条直线,且a∥b,则直线a平行于经过直线b的所有平面
C.若直线a与平面α不平行,则此直线与平面内的所有直线都不平行
D.若直线a∥平面α,点P∈α,则平面α内经过点P且与直线a平行的直线有且只有一条
7.若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.
8.如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形.∠ACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值为________.
9. 如图是正四面体(各面均为正三角形)的平面展开图,G、H、M、N分别为DE、BE、EF、EC的中点,在这个正四面体中,
①GH与EF平行;
②BD与MN为异面直线;
③GH与MN成60°角;
④DE与MN垂直.
以上四个命题中,正确命题的序号是________.
10.如图,三棱锥A—BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.
*11. 如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻折成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中,下面四个命题中不正确的是________.
①BM是定值;
②点M在某个球面上运动;
③存在某个位置,使DE⊥A1C;
④存在某个位置,使MB∥平面A1DE.
12. 如图所示,等腰直角三角形ABC中,∠A=90°,BC=,DA⊥AC,DA⊥AB,若DA=1,且E为DA的中点.求异面直线BE与CD所成角的余弦值.
*13.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF=Q.求证:
(1)D、B、F、E四点共面;
(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
1.下列命题正确的个数为( )
①梯形可以确定一个平面;
②若两条直线和第三条直线所成的角相等,则这两条直线平行;
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合.
A.0 B.1 C.2 D.3
2.已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )
A.m∥l B.m∥n
C.n⊥l D.m⊥n
3.已知a,b是异面直线,直线c平行于直线a,那么c与b( )
A.一定是异面直线 B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
4. 如图所示,已知在长方体ABCD-EFGH中,AB=2,AD=2,AE=2,则BC和EG所成角的大小是______,AE和BG所成角的大小是________.8.4直线、平面平行-教师版
1.下列命题中正确的是( )
A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
C.平行于同一条直线的两个平面平行
D.若直线a,b和平面α满足a∥b,a∥α,b α,则b∥α
答案 D
解析 A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.
2.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )
A.不一定存在与a平行的直线 B.只有两条与a平行的直线
C.存在无数条与a平行的直线 D.存在唯一与a平行的直线
答案 A
解析 当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.
3.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.
答案 6
解析 各中点连线如图,只有平面EFGH与平面ABB1A1平行,
在四边形EFGH中有6条符合题意.
4. 如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.
答案 平行四边形
解析 ∵平面ABFE∥平面DCGH,
又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,
∴EF∥HG.同理EH∥FG,
∴四边形EFGH的形状是平行四边形.
无
题型一 直线与平面平行的判定与性质
命题点1 直线与平面平行的判定
例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.
证明
(1)连接EC,
∵AD∥BC,BC=AD,
∴BC綊AE,
∴四边形ABCE是平行四边形,
∴O为AC的中点.
又∵F是PC的中点,∴FO∥AP,
FO 平面BEF,AP 平面BEF,
∴AP∥平面BEF.
(2)连接FH,OH,
∵F,H分别是PC,CD的中点,
∴FH∥PD,∴FH∥平面PAD.
又∵O是BE的中点,H是CD的中点,
∴OH∥AD,∴OH∥平面PAD.
又FH∩OH=H,∴平面OHF∥平面PAD.
又∵GH 平面OHF,∴GH∥平面PAD.
命题点2 直线与平面平行的性质
例2 如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积.
(1)证明 因为BC∥平面GEFH,BC 平面PBC,
且平面PBC∩平面GEFH=GH,
所以GH∥BC.
同理可证EF∥BC,因此GH∥EF.
(2)解 如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.
因为PA=PC,O是AC的中点,所以PO⊥AC,
同理可得PO⊥BD.
又BD∩AC=O,且AC,BD都在底面内,
所以PO⊥底面ABCD.
又因为平面GEFH⊥平面ABCD,
且PO 平面GEFH,所以PO∥平面GEFH.
因为平面PBD∩平面GEFH=GK,
所以PO∥GK,且GK⊥底面ABCD,
从而GK⊥EF.所以GK是梯形GEFH的高.
由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,
从而KB=DB=OB,即K为OB的中点.
再由PO∥GK得GK=PO,
即G是PB的中点,且GH=BC=4.
由已知可得OB=4,
PO===6,
所以GK=3.
故四边形GEFH的面积S=·GK=×3=18.
【同步练习】
1、如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.
证明 ∵CD∥平面EFGH,
而平面EFGH∩平面BCD=EF,
∵CD∥EF.
同理HG∥CD,且HE∥AB,∴EF∥HG.
同理HE∥GF,
∴四边形EFGH为平行四边形.
∴CD∥EF,HE∥AB,
∴∠HEF为异面直线CD和AB所成的角(或补角).
又∵CD⊥AB,∴HE⊥EF.
∴平行四边形EFGH为矩形.
题型二 平面与平面平行的判定与性质
例3 如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: (1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.
证明 (1)∵G,H分别是A1B1,A1C1的中点,
∴GH是△A1B1C1的中位线,
∴GH∥B1C1.
又∵B1C1∥BC,
∴GH∥BC,
∴B,C,H,G四点共面.
(2)∵E,F分别是AB,AC的中点,
∴EF∥BC.
∵EF 平面BCHG,BC 平面BCHG,
∴EF∥平面BCHG.
∵A1G綊EB,
∴四边形A1EBG是平行四边形,
∴A1E∥GB.
∵A1E 平面BCHG,GB 平面BCHG,
∴A1E∥平面BCHG.
∵A1E∩EF=E,
∴平面EFA1∥平面BCHG.
引申探究
1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.
证明
如图所示,连接HD,A1B,
∵D为BC1的中点,H为A1C1的中点,
∴HD∥A1B,
又HD 平面A1B1BA,
A1B 平面A1B1BA,
∴HD∥平面A1B1BA.
2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.
证明 如图所示,连接A1C交AC1于点M,
∵四边形A1ACC1是平行四边形,
∴M是A1C的中点,连接MD,
∵D为BC的中点,
∴A1B∥DM.∵A1B 平面A1BD1,
DM 平面A1BD1,
∴DM∥平面A1BD1.
又由三棱柱的性质知,D1C1綊BD,
∴四边形BDC1D1为平行四边形,
∴DC1∥BD1.
又DC1 平面A1BD1,BD1 平面A1BD1,
∴DC1∥平面A1BD1,
又∵DC1∩DM=D,DC1 平面AC1D,DM 平面AC1D,∴平面A1BD1∥平面AC1D.
【同步练习】
1、如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
(1)证明 由题设知,BB1綊DD1,
∴四边形BB1D1D是平行四边形,∴BD∥B1D1.
又BD 平面CD1B1,B1D1 平面CD1B1,
∴BD∥平面CD1B1.
∵A1D1綊B1C1綊BC,
∴四边形A1BCD1是平行四边形,∴A1B∥D1C.
又A1B 平面CD1B1,D1C 平面CD1B1,
∴A1B∥平面CD1B1.
又BD∩A1B=B,∴平面A1BD∥平面CD1B1.
(2)解 ∵A1O⊥平面ABCD,
∴A1O是三棱柱ABD-A1B1D1的高.
又AO=AC=1,AA1=,
∴A1O==1.
又S△ABD=××=1,
∴=S△ABD·A1O=1.
1.线面平行的判定定理和性质定理
文字语言 图形语言 符号语言
判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行 线面平行”) ∵l∥a,a α,l α,∴l∥α
性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行 线线平行”) ∵l∥α,l β,α∩β=b,∴l∥b
2.面面平行的判定定理和性质定理
文字语言 图形语言 符号语言
判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行 面面平行”) ∵a∥β,b∥β,a∩b=P,a α,b α,∴α∥β
性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 ∵α∥β,α∩γ=a,β∩γ=b,∴a∥b
题型三 平行关系的综合应用
例4 如图所示,在三棱柱ABC-A1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.
解 方法一 存在点E,且E为AB的中点时,DE∥平面AB1C1.
下面给出证明:
如图,取BB1的中点F,连接DF,
则DF∥B1C1,
∵AB的中点为E,连接EF,ED,
则EF∥AB1,B1C1∩AB1=B1,
∴平面DEF∥平面AB1C1.
而DE 平面DEF,
∴DE∥平面AB1C1.
方法二 假设在棱AB上存在点E,
使得DE∥平面AB1C1,
如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,
又DF 平面AB1C1,B1C1 平面AB1C1,
∴DF∥平面AB1C1,
又DE∥平面AB1C1,DE∩DF=D,
∴平面DEF∥平面AB1C1,
∵EF 平面DEF,∴EF∥平面AB1C1,
又∵EF 平面ABB1,平面ABB1∩平面AB1C1=AB1,
∴EF∥AB1,
∵点F是BB1的中点,∴点E是AB的中点.
即当点E是AB的中点时,DE∥平面AB1C1.
【同步练习】
1、如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?
解 ∵AB∥平面EFGH,
平面EFGH与平面ABC和平面ABD分别交于FG,EH.
∴AB∥FG,AB∥EH,∴FG∥EH,同理可证EF∥GH,
∴截面EFGH是平行四边形.
设AB=a,CD=b,∠FGH=α(α即为异面直线AB和CD所成的角或其补角).
又设FG=x,GH=y,则由平面几何知识可得=,
=,两式相加得+=1,即y=(a-x),
∴S EFGH=FG·GH·sin α
=x··(a-x)·sin α=x(a-x).
∵x>0,a-x>0且x+(a-x)=a为定值,
∴x(a-x)≤,当且仅当x=a-x时等号成立.
此时x=,y=.
即当截面EFGH的顶点E、F、G、H分别为棱AD、AC、BC、BD的中点时截面面积最大.
2、如图,在四棱锥S-ABCD中,已知底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,tan∠SDA=.
(1)求四棱锥S-ABCD的体积;
(2)在棱SD上找一点E,使CE∥平面SAB,并证明.
规范解答
解 (1)∵SA⊥底面ABCD,tan∠SDA=,SA=2,
∴AD=3.
由题意知四棱锥S-ABCD的底面为直角梯形,且SA=AB=BC=2,
VS-ABCD=·SA··(BC+AD)·AB
=×2××(2+3)×2=.
(2)当点E位于棱SD上靠近D的三等分点处时,可使CE∥平面SAB.
证明如下:
取SD上靠近D的三等分点为E,取SA上靠近A的三等分点为F,连接CE,EF,BF,
则EF綊AD,BC綊AD,
∴BC綊EF,∴CE∥BF.
又∵BF 平面SAB,CE 平面SAB,
∴CE∥平面SAB.
一、判断或证明线面平行的常用方法
(1)利用线面平行的定义(无公共点);
(2)利用线面平行的判定定理(a α,b α,a∥b a∥α);
(3)利用面面平行的性质定理(α∥β,a α a∥β);
(4)利用面面平行的性质(α∥β,a α,a β,a∥α a∥β).
二、证明面面平行的方法
(1)面面平行的定义;
(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;
(3)利用垂直于同一条直线的两个平面平行;
(4)两个平面同时平行于第三个平面,那么这两个平面平行;
(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
1.有下列命题:
①若直线l平行于平面α内的无数条直线,则直线l∥α;
②若直线a在平面α外,则a∥α;
③若直线a∥b,b∥α,则a∥α;
④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
答案 A
解析 命题①:l可以在平面α内,不正确;命题②:直线a与平面α可以是相交关系,不正确;命题③:a可以在平面α内,不正确;命题④正确.故选A.
2.已知m,n,l1,l2表示直线,α,β表示平面.若m α,n α,l1 β,l2 β,l1∩l2=M,则α∥β的一个充分条件是( )
A.m∥β且l1∥α B.m∥β且n∥β
C.m∥β且n∥l2 D.m∥l1且n∥l2
答案 D
解析 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D可推知α∥β.故选D.
3.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是( )
A.若m∥α,n∥α,则m∥n
B.若m∥α,n α,则m∥n
C.若m∥α,n⊥α,则m∥n
D.若m⊥α,n⊥α,则m∥n
答案 D
解析 对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.
4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )
A.①③ B.①④ C.②③ D.②④
答案 B
解析 ①中易知NP∥AA′,MN∥A′B,
∴平面MNP∥平面AA′B可得出AB∥平面MNP(如图).
④中,NP∥AB,能得出AB∥平面MNP.
5.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于A,C两点,过点P的直线n与α,β分别交于B,D两点,且PA=6,AC=9,PD=8,则BD的长为( )
A.16 B.24或
C.14 D.20
答案 B
解析 由α∥β得AB∥CD.
分两种情况:
若点P在α,β的同侧,则=,
∴PB=,∴BD=;
若点P在α,β之间,则=,
∴PB=16,∴BD=24.
6.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β;
②如果m⊥α,n∥α,那么m⊥n;
③如果α∥β,m α,那么m∥β;
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________.(填写所有正确命题的编号)
答案 ②③④
解析 当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.
7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n β;②m∥γ,n∥β;③n∥β,m γ.
可以填入的条件有________.
答案 ①或③
解析 由面面平行的性质定理可知,①正确;当n∥β,m γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.
8.在正四棱柱ABCD-A1B1C1D1中,O是底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
答案 Q为CC1的中点
解析 假设Q为CC1的中点.
因为P为DD1的中点,
所以QB∥PA.
连接DB,因为O是底面ABCD的中心,
所以D1B∥PO,
又D1B 平面PAO,QB 平面PAO,且PA∩PO于P,
所以D1B∥平面PAO,QB∥平面PAO,
又D1B∩QB于B,所以平面D1BQ∥平面PAO.
故点Q满足条件,Q为CC1的中点时,有平面D1BQ∥平面PAO.
9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
答案 平面ABD与平面ABC
解析 如图,取CD的中点E,连接AE,BE.
则EM∶MA=1∶2,
EN∶BN=1∶2,
所以MN∥AB.
所以MN∥平面ABD,
MN∥平面ABC.
*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.
答案
解析 如图,取AC的中点G,
连接SG,BG.
易知SG⊥AC,BG⊥AC,SG∩BG=G,
故AC⊥平面SGB,
所以AC⊥SB.
因为SB∥平面DEFH,SB 平面SAB,平面SAB∩平面DEFH=HD,
则SB∥HD.同理SB∥FE.
又D,E分别为AB,BC的中点,
则H,F也为AS,SC的中点,
从而得HF綊AC綊DE,
所以四边形DEFH为平行四边形.
又AC⊥SB,SB∥HD,DE∥AC,
所以DE⊥HD,
所以四边形DEFH为矩形,其面积S=HF·HD=(AC)·(SB)=.
11. 如图,E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:
(1)EG∥平面BB1D1D;
(2)平面BDF∥平面B1D1H.
证明 (1)取B1D1的中点O,连接GO,OB,
易证四边形BEGO为平行四边形,故OB∥GE,
由线面平行的判定定理即可证EG∥平面BB1D1D.
(2)由题意可知BD∥B1D1.
如图,连接HB、D1F,
易证四边形HBFD1是平行四边形,故HD1∥BF.
又B1D1∩HD1=D1,
BD∩BF=B,
所以平面BDF∥平面B1D1H.
12. 在如图所示的多面体ABCDEF中,四边形ABCD是边长为a的菱形,且∠DAB=60°,DF=2BE=2a,DF∥BE,DF⊥平面ABCD.
(1)在AF上是否存在点G,使得EG∥平面ABCD,请证明你的结论;
(2)求该多面体的体积.
解 (1) 当点G位于AF中点时,有EG∥平面ABCD.
证明如下:取AF的中点G,AD的中点H,连接GH,GE,BH.
在△ADF中,HG为中位线,
故HG∥DF且HG=DF.
因为BE∥DF且BE=DF,
所以BE綊GH,即四边形BEGH为平行四边形,
所以EG∥BH.
因为BH 平面ABCD,EG 平面ABCD,
所以E
G∥平面ABCD.
(2) 连接AC,BD.
因为DF⊥平面ABCD,底面ABCD是菱形,
所以AC⊥平面BDFE.
所以该多面体可分割成两个以平面BDFE为底面的等体积的四棱锥.
即VABCDEF=VA-BDFE+VC-BDFE=2VA-BDFE
=2×××a×a
=a3.
*13.如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点.
(1)当等于何值时,BC1∥平面AB1D1
(2)若平面BC1D∥平面AB1D1,求的值.
解 (1) 如图所示,取D1为线段A1C1的中点,此时=1.
连接A1B,交AB1于点O,连接OD1.
由棱柱的性质知,四边形A1ABB1为平行四边形,
∴点O为A1B的中点.
在△A1BC1中,点O,D1分别为A1B,A1C1的中点,
∴OD1∥BC1.
又∵OD1 平面AB1D1,BC1 平面AB1D1,
∴BC1∥平面AB1D1.
∴当=1时,BC1∥平面AB1D1.
(2)由平面BC1D∥平面AB1D1,
且平面A1BC1∩平面BC1D=BC1,
平面A1BC1∩平面AB1D1=D1O,
得BC1∥D1O,同理AD1∥DC1,
∴=,=,
又∵=1,∴=1,即=1.8.4直线、平面平行-学生版
1.下列命题中正确的是( )
A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面
B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行
C.平行于同一条直线的两个平面平行
D.若直线a,b和平面α满足a∥b,a∥α,b α,则b∥α
2.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )
A.不一定存在与a平行的直线 B.只有两条与a平行的直线
C.存在无数条与a平行的直线 D.存在唯一与a平行的直线
3.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.
4. 如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.
无
题型一 直线与平面平行的判定与性质
命题点1 直线与平面平行的判定
例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.
(1)求证:AP∥平面BEF;
(2)求证:GH∥平面PAD.
命题点2 直线与平面平行的性质
例2 如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(1)证明:GH∥EF;
(2)若EB=2,求四边形GEFH的面积.
【同步练习】
1、如图所示,CD,AB均与平面EFGH平行,E,F,G,H分别在BD,BC,AC,AD上,且CD⊥AB.求证:四边形EFGH是矩形.
题型二 平面与平面平行的判定与性质
例3 如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证: (1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.
引申探究
1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.
2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.
【同步练习】
1、如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)证明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的体积.
1.线面平行的判定定理和性质定理
文字语言 图形语言 符号语言
判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行 线面平行”) ∵l∥a,a α,l α,∴l∥α
性质定理 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行 线线平行”) ∵l∥α,l β,α∩β=b,∴l∥b
2.面面平行的判定定理和性质定理
文字语言 图形语言 符号语言
判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行 面面平行”) ∵a∥β,b∥β,a∩b=P,a α,b α,∴α∥β
性质定理 如果两个平行平面同时和第三个平面相交,那么它们的交线平行 ∵α∥β,α∩γ=a,β∩γ=b,∴a∥b
题型三 平行关系的综合应用
例4 如图所示,在三棱柱ABC-A1B1C1中,D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,请确定点E的位置;若不存在,请说明理由.
【同步练习】
1、如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?
2、如图,在四棱锥S-ABCD中,已知底面ABCD为直角梯形,其中AD∥BC,∠BAD=90°,SA⊥底面ABCD,SA=AB=BC=2,tan∠SDA=.
(1)求四棱锥S-ABCD的体积;
(2)在棱SD上找一点E,使CE∥平面SAB,并证明.
一、判断或证明线面平行的常用方法
(1)利用线面平行的定义(无公共点);
(2)利用线面平行的判定定理(a α,b α,a∥b a∥α);
(3)利用面面平行的性质定理(α∥β,a α a∥β);
(4)利用面面平行的性质(α∥β,a α,a β,a∥α a∥β).
二、证明面面平行的方法
(1)面面平行的定义;
(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;
(3)利用垂直于同一条直线的两个平面平行;
(4)两个平面同时平行于第三个平面,那么这两个平面平行;
(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
1.有下列命题:
①若直线l平行于平面α内的无数条直线,则直线l∥α;
②若直线a在平面α外,则a∥α;
③若直线a∥b,b∥α,则a∥α;
④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
2.已知m,n,l1,l2表示直线,α,β表示平面.若m α,n α,l1 β,l2 β,l1∩l2=M,则α∥β的一个充分条件是( )
A.m∥β且l1∥α B.m∥β且n∥β
C.m∥β且n∥l2 D.m∥l1且n∥l2
3.对于空间中的两条直线m,n和一个平面α,下列命题中的真命题是( )
A.若m∥α,n∥α,则m∥n
B.若m∥α,n α,则m∥n
C.若m∥α,n⊥α,则m∥n
D.若m⊥α,n⊥α,则m∥n
4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )
A.①③ B.①④ C.②③ D.②④
5.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于A,C两点,过点P的直线n与α,β分别交于B,D两点,且PA=6,AC=9,PD=8,则BD的长为( )
A.16 B.24或 C.14 D.20
6.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β;
②如果m⊥α,n∥α,那么m⊥n;
③如果α∥β,m α,那么m∥β;
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________.(填写所有正确命题的编号)
7.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
①α∥γ,n β;②m∥γ,n∥β;③n∥β,m γ.
可以填入的条件有________.
8.在正四棱柱ABCD-A1B1C1D1中,O是底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.
9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.
*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.
11. 如图,E、F、G、H分别是正方体ABCD-A1B1C1D1的棱BC、CC1、C1D1、AA1的中点.求证:
(1)EG∥平面BB1D1D;
(2)平面BDF∥平面B1D1H.
12. 在如图所示的多面体ABCDEF中,四边形ABCD是边长为a的菱形,且∠DAB=60°,DF=2BE=2a,DF∥BE,DF⊥平面ABCD.
(1)在AF上是否存在点G,使得EG∥平面ABCD,请证明你的结论;
(2)求该多面体的体积.
*13.如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点.
(1)当等于何值时,BC1∥平面AB1D1
(2)若平面BC1D∥平面AB1D1,求的值.8.5直线、平面垂直-教师版
1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( × )
(2)垂直于同一个平面的两平面平行.( × )
(3)直线a⊥α,直线b⊥α,则a∥b.( √ )
(4)若α⊥β,a⊥β a∥α.( × )
(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √ )
2、下列命题中不正确的是( )
A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
答案 A
解析 根据面面垂直的性质,知A不正确,直线l可能平行平面β,也可能在平面β内.
3、设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
答案 A
解析 若α⊥β,因为α∩β=m,b β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.
4、对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;
②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;
④若AB⊥CD,AC⊥BD,则BC⊥AD.
其中为真命题的是( )
A.①② B.②③ C.②④ D.①④
答案 D
解析 ①如图,取BC的中点M,连接AM,DM,由AB=AC AM⊥BC,同理DM⊥BC BC⊥平面AMD,而AD 平面AMD,故BC⊥AD.④设A在平面BCD内的射影为O,连接BO,CO,DO,由AB⊥CD BO⊥CD,由AC⊥BD CO⊥BD O为△BCD的垂心 DO⊥BC AD⊥BC.
5、在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
(1)若PA=PB=PC,则点O是△ABC的________心.
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
答案 (1)外 (2)垂
解析 (1)如图1,连接OA,OB,OC,OP,
在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,
所以OA=OB=OC,即O为△ABC的外心.
(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.
∵PC⊥PA,PB⊥PC,PA∩PB=P,
∴PC⊥平面PAB,AB 平面PAB,∴PC⊥AB,
又AB⊥PO,PO∩PC=P,
∴AB⊥平面PGC,
又CG 平面PGC,
∴AB⊥CG,即CG为△ABC边AB的高.
同理可证BD,AH为△ABC底边上的高,
即O为△ABC的垂心.
无
题型一 直线与平面垂直的判定与性质
例1 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.
OD′=.
证明:D′H⊥平面ABCD.
证明 由已知得AC⊥BD,AD=CD.
又由AE=CF得=,故AC∥EF.
因此EF⊥HD,从而EF⊥D′H.
由AB=5,AC=6得DO=BO==4.
由EF∥AC得==.
所以OH=1,D′H=DH=3.
于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.
又D′H⊥EF,而OH∩EF=H,且OH,EF 平面ABCD,
所以D′H⊥平面ABCD.
【同步练习】
1、在三棱锥A-BCD中,AB⊥平面BCD,DB=DC=4,∠BDC=90°,P在线段BC上,CP=3PB,M,N分别为AD,BD的中点.
求证:BC⊥平面MNP.
证明 因为MN是△ABD的中位线,
所以MN∥AB.
又AB⊥平面BCD,
所以MN⊥平面BCD,
又因为BC 平面BCD,
所以MN⊥BC.①
取BC的中点Q,连接DQ,则DQ⊥BC.
由PN是△BDQ的中位线知PN∥DQ,
所以PN⊥BC.②
由①②可得BC⊥平面MNP.
题型二 平面与平面垂直的判定与性质
例2 如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
证明 (1)方法一
取PA的中点H,连接EH,DH.
又E为PB的中点,
所以EH綊AB.
又CD綊AB,
所以EH綊CD.
所以四边形DCEH是平行四边形,所以CE∥DH.
又DH 平面PAD,CE 平面PAD.
所以CE∥平面PAD.
方法二 连接CF.
因为F为AB的中点,
所以AF=AB.
又CD=AB,所以AF=CD.
又AF∥CD,所以四边形AFCD为平行四边形.
因此CF∥AD,又CF 平面PAD,AD 平面PAD,
所以CF∥平面PAD.
因为E,F分别为PB,AB的中点,所以EF∥PA.
又EF 平面PAD,PA 平面PAD,
所以EF∥平面PAD.
因为CF∩EF=F,故平面CEF∥平面PAD.
又CE 平面CEF,所以CE∥平面PAD.
(2)因为E、F分别为PB、AB的中点,所以EF∥PA.
又因为AB⊥PA,
所以EF⊥AB,同理可证AB⊥FG.
又因为EF∩FG=F,EF 平面EFG,FG 平面EFG.
所以AB⊥平面EFG.
又因为M,N分别为PD,PC的中点,
所以MN∥CD,又AB∥CD,所以MN∥AB,
所以MN⊥平面EFG.
又因为MN 平面EMN,所以平面EFG⊥平面EMN.
引申探究
1.在本例条件下,证明:平面EMN⊥平面PAC.
证明 因为AB⊥PA,AB⊥AC,
且PA∩AC=A,PA 平面PAC,AC 平面PAC,
所以AB⊥平面PAC.
又MN∥CD,CD∥AB,所以MN∥AB,
所以MN⊥平面PAC.
又MN 平面EMN,
所以平面EMN⊥平面PAC.
2.在本例条件下,证明:平面EFG∥平面PAC.
证明 因为E,F,G分别为PB,AB,BC的中点,
所以EF∥PA,FG∥AC,
又EF 平面PAC,PA 平面PAC,
所以EF∥平面PAC.
同理,FG∥平面PAC.
又EF∩FG=F,
所以平面EFG∥平面PAC.
【同步练习】
1、如图,在直三棱柱ABC—A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
求证:(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
证明 (1)由已知,DE为△ABC的中位线,
∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,
∴DE∥A1C1,
又∵DE 平面A1C1F,A1C1 平面A1C1F,
∴DE∥平面A1C1F.
(2)在直三棱柱ABC—A1B1C1中,AA1⊥平面A1B1C1,
∴AA1⊥A1C1,
又∵A1B1⊥A1C1,且A1B1∩AA1=A1,
A1B1 平面ABB1A1,AA1 平面ABB1A1,
∴A1C1⊥平面ABB1A1,
∵B1D 平面ABB1A1,
∴A1C1⊥B1D,
又∵A1F⊥B1D,且A1F∩A1C1=A1,
A1F 平面A1C1F,A1C1 平面A1C1F,
∴B1D⊥平面A1C1F,
又∵B1D 平面B1DE,
∴平面B1DE⊥平面A1C1F.
1.直线与平面垂直
(1)定义
如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.
(2)判定定理与性质定理
文字语言 图形语言 符号语言
判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 l⊥α
性质定理 垂直于同一个平面的两条直线平行 a∥b
2.直线和平面所成的角
(1)定义
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.
(2)范围:[0,].
3.平面与平面垂直
(1)二面角的有关概念
①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
(2)平面和平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(3)平面与平面垂直的判定定理与性质定理
文字语言 图形语言 符号语言
判定定理 一个平面过另一个平面的垂线,则这两个平面垂直 α⊥β
性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 l⊥α
【知识拓展】
重要结论:
(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线.
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.
题型三 求空间角
命题点1 求两条异面直线所成的角和二面角
例3 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AD,AA1的中点.
(1)求直线EF和直线AB1所成的角的大小;
(2)求二面角D—A1C1—D1的正切值.
解 (1)在正方体ABCD—A1B1C1D1中,
因为E,F分别是AD,AA1的中点,
所以EF∥A1D.
因为AD∥B1C1,AD=B1C1,
所以四边形ADC1B1为平行四边形.
所以AB1∥DC1.
所以∠A1DC1是直线AB1和EF所成的角.
因为△A1DC1是等边三角形,
所以∠A1DC1=60°,
即直线AB1和EF所成的角是60°.
(2)在正方体ABCD—A1B1C1D1中,连接B1D1交A1C1于点M,连接DM,则D1M⊥A1C1.
又DD1⊥平面A1C1,
所以DD1⊥A1C1,
且D1M∩DD1=D1,
所以A1C1⊥平面DD1M,又DM 平面DD1M,
所以DM⊥A1C1.
故∠DMD1为二面角D—A1C1—D1的平面角,
故tan∠DMD1==.
命题点2 求直线和平面所成的角
例4 如图,在三棱锥D—ABC中,DA=DB=DC,点D在底面ABC上的射影为点E,AB⊥BC,DF⊥AB于点F.
(1)求证:平面ABD⊥平面DEF;
(2)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.
(1)证明 如图,由题意知DE⊥平面ABC,
所以AB⊥DE,又AB⊥DF,
DE∩DF=D,
所以AB⊥平面DEF,
又AB 平面ABD,所以平面ABD⊥平面DEF.
(2)解 由DA=DB=DC,知EA=EB=EC,E为AC的中点,
所以E是△ABC的外心.
过点E作EH⊥DF于点H,则由(1)知EH⊥平面DAB,
所以∠EBH即为BE与平面DAB所成的角.
由AC=4,∠BAC=60°,得DE=2,EF=,
所以DF=,EH=,
所以sin∠EBH==.
所以直线BE与平面DAB所成角的正弦值为.
【同步练习】
1、在如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,BC=,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线CE与平面ABED所成角的余弦值.
(1)证明 如图所示,取CE的中点为M,连接BM,MF,
因为F为CD的中点,所以MF綊ED.
又AB∥DE,DE=2AB,所以MF綊AB,
所以四边形ABMF为平行四边形.
所以BM∥AF.
因为BM 平面BCE,AF 平面BCE,
所以AF∥平面BCE.
(2)解 因为△ACD是正三角形,
所以AC=AD=CD=2.
在△ABC中,AB=1,AC=2,BC=,
所以AB2+AC2=BC2,故AB⊥AC.
又AB⊥AD,AC∩AD=A,
所以AB⊥平面ACD.
如图所示,取AD的中点H,连接CH,EH,则AB⊥CH.
又AC=CD,所以CH⊥AD.
又AB∩AD=A,所以CH⊥平面ABED,
所以∠CEH是直线CE与平面ABED所成的角.
在Rt△CHE中,CH=,EH=,CE=2,
所以cos∠CEH==.
所以直线CE与平面ABED所成角的余弦值为.
2、 如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.
求证:(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
规范解答
证明 (1) 如图所示,连接NK.
在正方体ABCD—A1B1C1D1中,
∵四边形AA1D1D,DD1C1C都为正方形,
∴AA1∥DD1,AA1=DD1,
C1D1∥CD,C1D1=CD.
∵N,K分别为CD,C1D1的中点,
∴DN∥D1K,DN=D1K,
∴四边形DD1KN为平行四边形,
∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,
∴四边形AA1KN为平行四边形,∴AN∥A1K.
∵A1K 平面A1MK,AN 平面A1MK,
∴AN∥平面A1MK.
(2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.
∵M,K分别为AB,C1D1的中点,
∴BM∥C1K,BM=C1K,
∴四边形BC1KM为平行四边形,∴MK∥BC1. [10分]
在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,
BC1 平面BB1C1C,∴A1B1⊥BC1.
∵MK∥BC1,∴A1B1⊥MK.
∵四边形BB1C1C为正方形,∴BC1⊥B1C. [12分]
∴MK⊥B1C.
∵A1B1 平面A1B1C,B1C 平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.
又∵MK 平面A1MK,
∴平面A1B1C⊥平面A1MK. [14分]
一、证明线面垂直的常用方法及关键
(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α b⊥α);③面面平行的性质(a⊥α,α∥β a⊥β);④面面垂直的性质.
(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
二、面面垂直
(1)判定面面垂直的方法
①面面垂直的定义;
②面面垂直的判定定理(a⊥β,a α α⊥β).
(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
三、垂直的核心
(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;
(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;
(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.
1.设α,β是两个不同的平面,m是直线,且m α,则“m⊥β”是“α⊥β”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
答案 A
解析 若m α,m⊥β,则α⊥β;反之,若α⊥β,m α,则m与β的位置关系不确定,所以“m⊥β”是“α⊥β”的充分不必要条件,故选A.
2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
A.若α⊥β,m α,n β,则m⊥n
B.若α∥β,m α,n β,,则m∥n
C.若m⊥n,m α,n β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
答案 D
解析 A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,若α∥β,仍然满足m⊥n,m α,n β,故C错误.故选D.
3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
A.直线AB上
B.直线BC上
C.直线AC上
D.△ABC内部
答案 A
解析 由AC⊥AB,AC⊥BC1,∴AC⊥平面ABC1.
又∵AC 平面ABC,∴平面ABC1⊥平面ABC.
∴C1在平面ABC上的射影H必在两平面交线AB上.
4.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )
A.CC1与B1E是异面直线
B.AC⊥平面ABB1A1
C.AE与B1C1是异面直线,且AE⊥B1C1
D.A1C1∥平面AB1E
答案 C
解析 A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故AC不可能垂直平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线,易得AE⊥BC,而B1C1 ∥BC,所以AE⊥B1C1 ;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故选C.
5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①BD⊥AC;
②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;
④平面ADC⊥平面ABC.
其中正确的是( )
A.①②④ B.①②③
C.②③④ D.①③④
答案 B
解析 由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,由②知③正确;由①知④错.故选B.
6.已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A. B.
C. D.
答案 B
解析 设三棱柱ABC—A1B1C1的各棱长为a,A1在底面ABC内的射影为O.则依题意,得AO==,由题意得四面体A1—ABC为四面体,所以∠A1AC=60°,∠AA1C1=120°.
在菱形ACC1A1中,AC1==a.
又点C1到底面ABC的距离等于A1到底面ABC的距离,且A1O= =a,因此AC1与底面ABC所成角的正弦值为=,
AC1与底面ABC所成角的余弦值为.
7. 如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.
答案 AB、BC、AC AB
解析 ∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;
∵AB⊥AC,AB⊥PC,AC∩PC=C,
∴AB⊥平面PAC,∴与AP垂直的直线是AB.
8. 如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
答案
解析 设B1F=x,
因为AB1⊥平面C1DF,DF 平面C1DF,
所以AB1⊥DF.
由已知可得A1B1=,
设Rt△AA1B1斜边AB1上的高为h,
则DE=h.
又2×=h,
所以h=,DE=.
在Rt△DB1E中,
B1E= =.
由面积相等得× =x,
得x=.
9. 如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.
其中正确结论的序号是________.
答案 ①②③
解析 由题意知PA⊥平面ABC,∴PA⊥BC.
又AC⊥BC,且PA∩AC=A,
∴BC⊥平面PAC,∴BC⊥AF.
∵AF⊥PC,且BC∩PC=C,
∴AF⊥平面PBC,
∴AF⊥PB,又AE⊥PB,AE∩AF=A,
∴PB⊥平面AEF,∴PB⊥EF.
故①②③正确.
10.在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC α,一直角边AC β,BC与β所成角的正弦值为,则AB与β所成的角是________.
答案
解析 如图所示,作BH⊥MN于点H,连接AH,
则BH⊥β,∠BCH为BC与β所成的角.
∵sin∠BCH==,
设BC=1,则BH=.
∵△ABC为等腰直角三角形,∴AC=AB=,
∴AB与β所成的角为∠BAH.
∴sin∠BAH===,
∴∠BAH=.
11.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
(1)解 取棱AD的中点M(M∈平面PAD),点M即为所求的一个点,理由如下:
连接BM,CM.
因为AD∥BC,BC=AD,
所以BC∥AM,且BC=AM,
所以四边形AMCB是平行四边形,从而CM∥AB.
又AB 平面PAB,CM 平面PAB.
所以CM∥平面PAB.
(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)
(2)证明 由已知,PA⊥AB,PA⊥CD.
因为AD∥BC,BC=CD=AD,
所以直线AB与CD相交,
因为AB 平面ABCD,CD 平面ABCD,
所以PA⊥平面ABCD,
又因为BD 平面ABCD,从而PA⊥BD.
又BC∥MD,且BC=MD.
所以四边形BCDM是平行四边形,
所以BM=CD=AD,所以BD⊥AB.
又AB∩AP=A,AB 平面PAB,AP 平面PAB,
所以BD⊥平面PAB.
又BD 平面PBD,
所以平面PAB⊥平面PBD.
12.在三棱柱ABC-A1B1C1中,AC⊥BC,AC1⊥平面ABC,BC=CA=AC1.
(1)求证:AC⊥平面AB1C1;
(2)求直线A1B与平面AB1C1所成角的余弦值.
(1)证明 由三棱柱的性质知,
BC∥B1C1.
因为∠ACB=90°,
所以AC⊥B1C1.
因为AC1⊥平面ABC,AC 平面ABC,
所以AC1⊥AC.
因为AC1∩B1C1=C1,AC1 平面AB1C1,B1C1 平面ABC1,
所以AC⊥平面AB1C1.
(2)解 因为三棱柱ABC-A1B1C1中AC∥A1C1,
又由(1)知,AC⊥平面AB1C1,
所以A1C1⊥平面AB1C1.
设A1B交AB1于点O,所以∠AOC1为直线A1B与平面AB1C1所成角.
设BC=CA=AC1=a,
Rt△AC1O中,OC1=a,A1O=a.
因此,cos∠A1OC1=,
故直线A1B与平面AB1C1所成角的余弦值为.
13.如图,在四棱锥P—ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.
(1)证明 ∵PC⊥平面ABCD,DC 平面ABCD,
∴PC⊥DC.又AC⊥DC,PC∩AC=C,
PC 平面PAC,AC 平面PAC,
∴DC⊥平面PAC.
(2)证明 ∵AB∥CD,CD⊥平面PAC,
∴AB⊥平面PAC,又AB 平面PAB,
∴平面PAB⊥平面PAC.
(3)解 棱PB上存在点F,使得PA∥平面CEF.
证明如下:
取PB的中点F,连接EF,CE,CF,又∵E为AB的中点,
∴EF为△PAB的中位线,
∴EF∥PA.又PA 平面CEF,EF 平面CEF,
∴PA∥平面CEF.8.5直线、平面垂直-学生版
1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )
(2)垂直于同一个平面的两平面平行.( )
(3)直线a⊥α,直线b⊥α,则a∥b.( )
(4)若α⊥β,a⊥β a∥α.( )
(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( )
2、下列命题中不正确的是( )
A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
3、设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4、对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;
②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;
④若AB⊥CD,AC⊥BD,则BC⊥AD.
其中为真命题的是( )
A.①② B.②③ C.②④ D.①④
5、在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
(1)若PA=PB=PC,则点O是△ABC的________心.
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
无
题型一 直线与平面垂直的判定与性质
例1 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置.OD′=.
证明:D′H⊥平面ABCD.
【同步练习】
1、在三棱锥A-BCD中,AB⊥平面BCD,DB=DC=4,∠BDC=90°,P在线段BC上,CP=3PB,M,N分别为AD,BD的中点.求证:BC⊥平面MNP.
题型二 平面与平面垂直的判定与性质
例2 如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
引申探究
1.在本例条件下,证明:平面EMN⊥平面PAC.
2.在本例条件下,证明:平面EFG∥平面PAC.
【同步练习】
1、如图,在直三棱柱ABC—A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
求证:(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
1.直线与平面垂直
(1)定义
如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.
(2)判定定理与性质定理
文字语言 图形语言 符号语言
判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 l⊥α
性质定理 垂直于同一个平面的两条直线平行 a∥b
2.直线和平面所成的角
(1)定义
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.
(2)范围:[0,].
3.平面与平面垂直
(1)二面角的有关概念
①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
(2)平面和平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(3)平面与平面垂直的判定定理与性质定理
文字语言 图形语言 符号语言
判定定理 一个平面过另一个平面的垂线,则这两个平面垂直 α⊥β
性质定理 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直 l⊥α
【知识拓展】
重要结论:
(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线.
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.
题型三 求空间角
命题点1 求两条异面直线所成的角和二面角
例3 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AD,AA1的中点.
(1)求直线EF和直线AB1所成的角的大小;
(2)求二面角D—A1C1—D1的正切值.
命题点2 求直线和平面所成的角
例4 如图,在三棱锥D—ABC中,DA=DB=DC,点D在底面ABC上的射影为点E,AB⊥BC,DF⊥AB于点F.
(1)求证:平面ABD⊥平面DEF;
(2)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.
【同步练习】
1、在如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,BC=,F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线CE与平面ABED所成角的余弦值.
2、 如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.
求证:(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
一、证明线面垂直的常用方法及关键
(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α b⊥α);③面面平行的性质(a⊥α,α∥β a⊥β);④面面垂直的性质.
(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
二、面面垂直
(1)判定面面垂直的方法
①面面垂直的定义;
②面面垂直的判定定理(a⊥β,a α α⊥β).
(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
三、垂直的核心
(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;
(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;
(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.
1.设α,β是两个不同的平面,m是直线,且m α,则“m⊥β”是“α⊥β”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
A.若α⊥β,m α,n β,则m⊥n
B.若α∥β,m α,n β,,则m∥n
C.若m⊥n,m α,n β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
A.直线AB上
B.直线BC上
C.直线AC上
D.△ABC内部
4.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )
A.CC1与B1E是异面直线
B.AC⊥平面ABB1A1
C.AE与B1C1是异面直线,且AE⊥B1C1
D.A1C1∥平面AB1E
5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①BD⊥AC;②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.
其中正确的是( )
A.①②④ B.①②③
C.②③④ D.①③④
6.已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A. B.
C. D.
7. 如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.
如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,
F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
9. 如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.
其中正确结论的序号是________.
10.在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC α,一直角边AC β,BC与β所成角的正弦值为,则AB与β所成的角是________.
11.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
12.在三棱柱ABC-A1B1C1中,AC⊥BC,AC1⊥平面ABC,BC=CA=AC1.
(1)求证:AC⊥平面AB1C1;
(2)求直线A1B与平面AB1C1所成角的余弦值.
13.如图,在四棱锥P—ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)空间中任意两非零向量a,b共面.( √ )
(2)在向量的数量积运算中(a·b)·c=a·(b·c).( × )
(3)对于非零向量b,由a·b=b·c,则a=c.( × )
(4)两向量夹角的范围与两异面直线所成角的范围相同.( × )
(5)若A、B、C、D是空间任意四点,则有+++=0.( √ )
题型一 空间向量的线性运算
例1 (1)如图,在四面体O-ABC中,=a,=b,=c,D为BC的中点,E为AD的中点,则=________.(用a,b,c表示)
答案 a+b+c
解析 =+=++
=a+b+c.
(2)三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量,,表示,.
解 =+=+
=+(-)
=+[(+)-]
=-++.
=+=-++
=++.
思维升华 用已知向量表示某一向量的方法
用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.在立体几何中三角形法则、平行四边形法则仍然成立.
如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);
(2)+.
解 (1)因为P是C1D1的中点,
所以=++
=a++
=a+c+=a+c+b.
(2)因为M是AA1的中点,
所以=+=+
=-a+(a+c+b)
=a+b+c.
又=+=+
=+=c+a,
所以+=(a+b+c)+(a+c)
=a+b+c.
题型二 共线定理、共面定理的应用
例2 已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.
(1)求证:E,F,G,H四点共面;
(2)求证:BD∥平面EFGH;
(3)设M是EG和FH的交点,求证:对空间任一点O,有=(+++).
证明 (1)连接BG,
则=+
=+(+)
=++
=+,
由共面向量定理的推论知E,F,G,H四点共面.
(2)因为=-
=-
=(-)=,
所以EH∥BD.
又EH 平面EFGH,BD 平面EFGH,
所以BD∥平面EFGH.
(3)找一点O,并连接OM,OA,OB,OC,OD,OE,OG.
由(2)知=,
同理=,
所以=,即EH綊FG,
所以四边形EFGH是平行四边形,
所以EG,FH交于一点M且被M平分.
故=(+)
=+
=[(+)]+[(+)]
=(+++).
思维升华 (1)证明空间三点P,A,B共线的方法
①=λ(λ∈R);
②对空间任一点O,=+t(t∈R);
③对空间任一点O,=x+y(x+y=1).
(2)证明空间四点P,M,A,B共面的方法
①=x+y;
②对空间任一点O,=+x+y;
③对空间任一点O,=x+y+z(x+y+z=1);
④∥(或∥或∥).
已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足=(++).
(1)判断,,三个向量是否共面;
(2)判断点M是否在平面ABC内.
解 (1)由题意知++=3,
∴-=(-)+(-)
即=+=--,
∴,,共面.
(2)由(1)知,,共面且基线过同一点M,
∴M,A,B,C四点共面.
从而点M在平面ABC内.
题型三 空间向量数量积的应用
例3 已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°.
(1)求线段AC1的长;
(2)求异面直线AC1与A1D所成角的余弦值;
(3)求证:AA1⊥BD.
(1)解 设=a,=b,=c,
则|a|=|b|=1,|c|=2,a·b=0,c·a=c·b=2×1×cos 120°=-1.
∵=+=++=a+b+c,
∴||=|a+b+c|=
=
==.
∴线段AC1的长为.
(2)解 设异面直线AC1与A1D所成的角为θ,
则cos θ=|cos〈,〉|=.
∵=a+b+c,=b-c,
∴·=(a+b+c)·(b-c)=a·b-a·c+b2-c2=0+1+12-22=-2,
||==
==.
∴cos θ==||=.
故异面直线AC1与A1D所成角的余弦值为.
(3)证明 ∵=c,=b-a,
∴·=c·(b-a)=c·b-c·a=(-1)-(-1)=0,
∴⊥,∴AA1⊥BD.
思维升华 (1)利用向量的数量积可证明线段的垂直关系,也可以利用垂直关系,通过向量共线确定点在线段上的位置;
(2)利用夹角公式,可以求异面直线所成的角,也可以求二面角;
(3)可以通过|a|=,将向量的长度问题转化为向量数量积的问题求解.
如图,在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60°.
(1)求的长;
(2)求与夹角的余弦值.
解 (1)记=a,=b,=c,
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
∴a·b=b·c=c·a=.
||2=(a+b+c)2=a2+b2+c2+2(a·b+b·c+c·a)=1+1+1+2×(++)=6,
∴||=,即AC1的长为.
(2)=b+c-a,=a+b,
∴||=,||=,
·=(b+c-a)·(a+b)
=b2-a2+a·c+b·c=1,
∴cos〈,〉==.
即与夹角的余弦值为.
1.空间向量的有关概念
名称 概念 表示
零向量 模为0的向量 0
单位向量 长度(模)为1的向量
相等向量 方向相同且模相等的向量 a=b
相反向量 方向相反且模相等的向量 a的相反向量为-a
共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量 a∥b
共面向量 平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量.
(3)空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示 坐标表示
数量积 a·b a1b1+a2b2+a3b3
共线 a=λb(b≠0,λ∈R) a1=λb1,a2=λb2,a3=λb3
垂直 a·b=0(a≠0,b≠0) a1b1+a2b2+a3b3=0
模 |a|
夹角 〈a,b〉(a≠0,b≠0) cos〈a,b〉=
【知识拓展】
(1)向量三点共线定理:在平面中A、B、C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.
(2)向量四点共面定理:在空间中P、A、B、C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间中任意一点.
典例 如图,已知直三棱柱ABC-A1B1C1,在底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1,A1A的中点.
(1)求的模;
(2)求cos〈,〉的值;
(3)求证:A1B⊥C1M.
思想方法指导 利用向量解决立体几何问题时,首先要将几何问题转化成向量问题,通过建立坐标系利用向量的坐标进行求解.
规范解答
(1)解 如图,建立空间直角坐标系.
依题意得B(0,1,0),N(1,0,1),
所以||==. [3分]
(2)解 依题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2).
所以=(1,-1,2),=(0,1,2),
·=3,||=,||=,
所以cos〈,〉=
=. [8分]
(3)证明 依题意得C1(0,0,2),M(,,2),
=(-1,1,-2),
=(,,0). [10分]
所以·=-++0=0,
所以⊥,即A1B⊥C1M. [14分]
1.已知正四面体ABCD的棱长为a,点E,F分别是BC,AD的中点,则·的值为( )
A.a2 B.a2 C.a2 D.a2
答案 C
解析 如图,
设=a,=b,=c,则|a|=|b|=|c|=a,且a,b,c三向量两两夹角为60°.=(a+b),=c,
∴·=(a+b)·c=(a·c+b·c)=(a2cos 60°+a2cos 60°)=a2.
2.向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),下列结论正确的是( )
A.a∥b,a∥c B.a∥b,a⊥c
C.a∥c,a⊥b D.以上都不对
答案 C
解析 因为c=(-4,-6,2)=2(-2,-3,1)=2a,
所以a∥c.
又a·b=(-2)×2+(-3)×0+1×4=0,
所以a⊥b.故选C.
3.与向量(-3,-4,5)共线的单位向量是__________________________________.
答案 和
解析 因为与向量a共线的单位向量是±,又因为向量(-3,-4,5)的模为=5,所以与向量(-3,-4,5)共线的单位向量是±(-3,-4,5)=±(-3,-4,5).
4.正四面体ABCD的棱长为2,E,F分别为BC,AD中点,则EF的长为________.
答案
解析 ||2=2=(++)2
=2+2+2+2(·+·+·)
=12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,
∴||=,∴EF的长为.
1.在下列命题中:
①若向量a,b共线,则向量a,b所在的直线平行;
②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;
③若三个向量a,b,c两两共面,则向量a,b,c共面;
④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
答案 A
解析 a与b共线,a,b所在的直线也可能重合,故①不正确;根据自由向量的意义知,空间任意两向量a,b都共面,故②不正确;三个向量a,b,c中任意两个一定共面,但它们三个却不一定共面,故③不正确;只有当a,b,c不共面时,空间任意一向量p才能表示为p=xa+yb+zc,故④不正确,综上可知四个命题中正确的个数为0,故选A.
2.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ等于( )
A.9 B.-9 C.-3 D.3
答案 B
解析 由题意知c=xa+yb,
即(7,6,λ)=x(2,1,-3)+y(-1,2,3),
∴解得λ=-9.
3.已知a=(-2,1,3),b=(-1,2,1),若a⊥(a-λb),则实数λ的值为( )
A.-2 B.- C. D.2
答案 D
解析 由题意知a·(a-λb)=0,即a2-λa·b=0,
所以14-7λ=0,解得λ=2.
4.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是( )
A. B. C.1 D.
答案 D
解析 ∵=++,
∴||2=||2+||2+||2+2·+2·+2·
=1+1+1-=3-,
故||=.
5.已知a,b是异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b且AB=2,CD=1,则异面直线a,b所成的角等于( )
A.30° B.45° C.60° D.90°
答案 C
解析 如图,
设=a,=b,=c,则=a+b+c,
所以cos〈,〉==,
所以异面直线a,b所成的角等于60°,
故选C.
6.正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为( )
A.a B.a
C.a D.a
答案 A
解析 以D为原点建立如图所示的空间直角坐标系Dxyz,
则A(a,0,0),C1(0,a,a),N(a,a,).
设M(x,y,z),
∵点M在AC1上且
=,
∴(x-a,y,z)=(-x,a-y,a-z),
∴x=a,y=,z=.
∴M(,,),
∴||=
=a.
7.A,B,C,D是空间不共面四点,且·=0,·=0,·=0,则△BCD的形状是________三角形.(填锐角、直角、钝角中的一个)
答案 锐角
解析 因为·=(-)·(-)
=·-·-·+2
=2>0,
所以∠CBD为锐角.
同理∠BCD,∠BDC均为锐角.
8.设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若=x+y+z,则x,y,z的值分别为______________.
答案 ,,
解析 如图所示,
取BC的中点E,连接AE.
==(+)
=+
=+(+)
=+(-+-)
=(++),
∴x=y=z=.
9.已知ABCD-A1B1C1D1为正方体,
①(++)2=32;
②·(-)=0;
③向量与向量的夹角是60°;
④正方体ABCD-A1B1C1D1的体积为|··|.
其中正确的序号是________.
答案 ①②
解析 ①中,(++)2=2+2+2=32,故①正确;②中,-=,因为AB1⊥A1C,故②正确;③中,两异面直线A1B与AD1所成的角为60°,但与的夹角为120°,故③不正确;④中,|··|=0,故④也不正确.
*10.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则
①A1M∥D1P;
②A1M∥B1Q;
③A1M∥平面DCC1D1;
④A1M∥平面D1PQB1.
以上正确说法的个数为________.
答案 3
解析 =+=+,=+=+,
∴∥,
∴A1M∥D1P,由线面平行的判定定理可知,
A1M∥平面DCC1D1,A1M∥平面D1PQB1.
①③④正确.
11.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)·;
(2)·;
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.
解 (1)设=a,=b,=c,
则|a|=|b|=|c|=1,〈a,b〉=〈b,c〉=〈c,a〉=60°,
==c-a,=-a,=b-c.
·=·(-a)
=a2-a·c=.
(2)·=(c-a)·(b-c)
=(b·c-a·b-c2+a·c)=-.
(3)=++=a+b-a+c-b
=-a+b+c,
||2=a2+b2+c2-a·b+b·c-c·a=,则||=.
(4)=b+c,=+=-b+a,
cos〈,〉==-,
由于异面直线所成角的范围是,
所以异面直线AG与CE所成角的余弦值为.
*12.直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.
(1)求证:CE⊥A′D;
(2)求异面直线CE与AC′所成角的余弦值.
(1)证明 设=a,=b,=c,
根据题意得,|a|=|b|=|c|,
且a·b=b·c=c·a=0,
∴=b+c,=-c+b-a.
∴·=-c2+b2=0.
∴⊥,即CE⊥A′D.
(2)解 ∵=-a+c,||=|a|,||=|a|.
·=(-a+c)·=c2=|a|2,
∴cos〈,〉==.
即异面直线CE与AC′所成角的余弦值为.
13.如图,在正方体ABCD-A1B1C1D1中,=a,=b,=c,点M,N分别是A1D,B1D1的中点.
(1)试用a,b,c表示;
(2)求证:MN∥平面ABB1A1.
(1)解 ∵=-=c-a,
∴==(c-a).
同理,=(b+c),
∴=-=(b+c)-(c-a)=(b+a)=a+b.
(2)证明 ∵=+=a+b,
∴=,即MN∥AB1,
∵AB1 平面ABB1A1,MN 平面ABB1A1,
∴MN∥平面ABB1A1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)空间中任意两非零向量a,b共面.( )
(2)在向量的数量积运算中(a·b)·c=a·(b·c).( )
(3)对于非零向量b,由a·b=b·c,则a=c.( )
(4)两向量夹角的范围与两异面直线所成角的范围相同.( )
(5)若A、B、C、D是空间任意四点,则有+++=0.( )
题型一 空间向量的线性运算
例1 (1)如图,在四面体O-ABC中,=a,=b,=c,D为BC的中点,E为AD的中点,则=________.(用a,b,c表示)
(2)三棱锥O-ABC中,M,N分别是OA,BC的中点,G是△ABC的重心,用基向量,,表示,.
如图所示,在空间几何体ABCD-A1B1C1D1中,各面为平行四边形,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量:
(1);
(2)+.
题型二 共线定理、共面定理的应用
例2 已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.
(1)求证:E,F,G,H四点共面;
(2)求证:BD∥平面EFGH;
(3)设M是EG和FH的交点,求证:对空间任一点O,有=(+++).
已知A,B,C三点不共线,对平面ABC外的任一点O,若点M满足=(++).
(1)判断,,三个向量是否共面;
(2)判断点M是否在平面ABC内.
题型三 空间向量数量积的应用
例3 已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°.
(1)求线段AC1的长;
(2)求异面直线AC1与A1D所成角的余弦值;
(3)求证:AA1⊥BD.
如图,在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两两夹角为60°.
(1)求的长;
(2)求与夹角的余弦值.
1.空间向量的有关概念
名称 概念 表示
零向量 模为0的向量 0
单位向量 长度(模)为1的向量
相等向量 方向相同且模相等的向量 a=b
相反向量 方向相反且模相等的向量 a的相反向量为-a
共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量 a∥b
共面向量 平行于同一个平面的向量
2.空间向量中的有关定理
(1)共线向量定理
空间两个向量a与b(b≠0)共线的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理
共面向量定理的向量表达式:p=xa+yb,其中x,y∈R,a,b为不共线向量.
(3)空间向量基本定理
如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积及相关概念
①两向量的夹角
已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a,b的夹角,记作〈a,b〉,其范围是0≤〈a,b〉≤π,若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
②两向量的数量积
已知空间两个非零向量a,b,则|a||b|cos〈a,b〉叫做向量a,b的数量积,记作a·b,即a·b=|a||b|cos〈a,b〉.
(2)空间向量数量积的运算律
①结合律:(λa)·b=λ(a·b);
②交换律:a·b=b·a;
③分配律:a·(b+c)=a·b+a·c.
4.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示 坐标表示
数量积 a·b a1b1+a2b2+a3b3
共线 a=λb(b≠0,λ∈R) a1=λb1,a2=λb2,a3=λb3
垂直 a·b=0(a≠0,b≠0) a1b1+a2b2+a3b3=0
模 |a|
夹角 〈a,b〉(a≠0,b≠0) cos〈a,b〉=
【知识拓展】
(1)向量三点共线定理:在平面中A、B、C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.
(2)向量四点共面定理:在空间中P、A、B、C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间中任意一点.
典例 如图,已知直三棱柱ABC-A1B1C1,在底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M,N分别是A1B1,A1A的中点.
(1)求的模;
(2)求cos〈,〉的值;
(3)求证:A1B⊥C1M.
1.已知正四面体ABCD的棱长为a,点E,F分别是BC,AD的中点,则·的值为( )
A.a2 B.a2 C.a2 D.a2
2.向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),下列结论正确的是( )
A.a∥b,a∥c B.a∥b,a⊥c
C.a∥c,a⊥b D.以上都不对
3.与向量(-3,-4,5)共线的单位向量是__________________________________.
4.正四面体ABCD的棱长为2,E,F分别为BC,AD中点,则EF的长为________.
1.在下列命题中:
①若向量a,b共线,则向量a,b所在的直线平行;
②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;
③若三个向量a,b,c两两共面,则向量a,b,c共面;
④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.
其中正确命题的个数是( )
A.0 B.1 C.2 D.3
2.已知a=(2,1,-3),b=(-1,2,3),c=(7,6,λ),若a,b,c三向量共面,则λ等于( )
A.9 B.-9 C.-3 D.3
3.已知a=(-2,1,3),b=(-1,2,1),若a⊥(a-λb),则实数λ的值为( )
A.-2 B.- C. D.2
4.如图,在大小为45°的二面角A-EF-D中,四边形ABFE,CDEF都是边长为1的正方形,则B,D两点间的距离是( )
A. B. C.1 D.
5.已知a,b是异面直线,A,B∈a,C,D∈b,AC⊥b,BD⊥b且AB=2,CD=1,则异面直线a,b所成的角等于( )
A.30° B.45° C.60° D.90°
6.正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为( )
A.a B.a
C.a D.a
7.A,B,C,D是空间不共面四点,且·=0,·=0,·=0,则△BCD的形状是________三角形.(填锐角、直角、钝角中的一个)
8.设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若=x+y+z,则x,y,z的值分别为______________.
9.已知ABCD-A1B1C1D1为正方体,
①(++)2=32;
②·(-)=0;
③向量与向量的夹角是60°;
④正方体ABCD-A1B1C1D1的体积为|··|.
其中正确的序号是________.
*10.如图,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则
①A1M∥D1P;
②A1M∥B1Q;
③A1M∥平面DCC1D1;
④A1M∥平面D1PQB1.
以上正确说法的个数为________.
11.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:
(1)·;
(2)·;
(3)EG的长;
(4)异面直线AG与CE所成角的余弦值.
*12.直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点.
(1)求证:CE⊥A′D;
(2)求异面直线CE与AC′所成角的余弦值.
13.如图,在正方体ABCD-A1B1C1D1中,=a,=b,=c,点M,N分别是A1D,B1D1的中点.
(1)试用a,b,c表示;
(2)求证:MN∥平面ABB1A1.1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面的单位法向量是唯一确定的.( × )
(2)若两平面的法向量平行,则两平面平行.( √ )
(3)若两直线的方向向量不平行,则两直线不平行.( √ )
(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × )
(5)两异面直线夹角的范围是(0,],直线与平面所成角的范围是[0,],二面角的范围是[0,π].( √ )
(6)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是π-θ.( × )
2、已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是( )
A.(-1,1,1) B.(1,-1,1)
C.(-,-,-) D.(,,-)
答案 C
解析 设n=(x,y,z)为平面ABC的法向量,
则化简得
∴x=y=z.故选C.
3、如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为( )
A. B.
C. D.
答案 A
解析 设CA=2,则C(0,0,0),A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得向量=(-2,2,1),=(0,2,-1),由向量的夹角公式得cos〈,〉===,故选A.
4、设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为________;当v=(4,-4,-10)时,α与β的位置关系为________.
答案 α⊥β α∥β
解析 当v=(3,-2,2)时,u·v=(-2,2,5)·(3,-2,2)=0 α⊥β.
当v=(4,-4,-10)时,v=-2u α∥β.
5、如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
答案 垂直
解析 以A为原点,分别以,,所在直线为x,y,z轴,建立空间直角坐标系,
设正方体棱长为1,则A(0,0,0),M(0,1,),O(,,0),
N(,0,1),·=(0,1,)·(0,-,1)=0,
∴ON与AM垂直.
无
题型一 利用空间向量证明平行问题
例1 如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.
证明 ∵平面PAD⊥平面ABCD,ABCD为正方形,
△PAD是直角三角形,且PA=AD,
∴AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系Axyz,
则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
∴=(2,0,-2),=(0,-1,0),=(1,1,-1),
设=s+t,
即(2,0,-2)=s(0,-1,0)+t(1,1,-1),
∴解得s=t=2,∴=2+2,
又∵与不共线,∴,与共面.
∵PB 平面EFG,∴PB∥平面EFG.
引申探究
本例中条件不变,证明平面EFG∥平面PBC.
证明 ∵=(0,1,0),=(0,2,0),
∴=2,∴BC∥EF.
又∵EF 平面PBC,BC 平面PBC,
∴EF∥平面PBC,
同理可证GF∥PC,从而得出GF∥平面PBC.
又EF∩GF=F,EF 平面EFG,GF 平面EFG,
∴平面EFG∥平面PBC.
【同步练习】
1、正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.
证明 如图所示,
以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.
设正方体的棱长为1,则M(0,1,),N(,1,1),D(0,0,0),A1(1,0,1),B(1,1,0),
于是=(,0,),=(1,0,1),=(1,1,0).
设平面A1BD的法向量为n=(x,y,z),
则n·=0,且n·=0,得
取x=1,得y=-1,z=-1.
所以n=(1,-1,-1).
又·n=(,0,)·(1,-1,-1)=0,
所以⊥n.
又MN 平面A1BD,所以MN∥平面A1BD.
题型二 利用空间向量证明垂直问题
例2 如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=AB,B1C1綊BC,二面角A1-AB-C是直二面角.求证:
(1)A1B1⊥平面AA1C;
(2)AB1∥平面A1C1C.
证明 (1)∵二面角A1-AB-C是直二面角,四边形A1ABB1为正方形,
∴AA1⊥平面BAC.
又∵AB=AC,BC=AB,
∴∠CAB=90°,即CA⊥AB,
∴AB,AC,AA1两两互相垂直.
建立如图所示的空间直角坐标系,点A为坐标原点,
设AB=2,则A(0,0,0),B1(0,2,2),A1(0,0,2),C(2,0,0),C1(1,1,2),
∴=(0,2,0),=(0,0,-2),=(2,0,0).
设平面AA1C的一个法向量n=(x,y,z),
则即
即取y=1,则n=(0,1,0).
∴=2n,即∥n.
∴A1B1⊥平面AA1C.
(2)易知=(0,2,2),=(1,1,0),=(2,0,-2),
设平面A1C1C的一个法向量m=(x1,y1,z1),
则即
令x1=1,则y1=-1,z1=1,即m=(1,-1,1).
∴·m=0×1+2×(-1)+2×1=0,
∴⊥m.
又AB1 平面A1C1C,∴AB1∥平面A1C1C.
【同步练习】
1、如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,设E,F分别为PC,BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PAB⊥平面PDC.
证明 (1)如图,
取AD的中点O,连接OP,OF.
因为PA=PD,所以PO⊥AD.
因为侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,
所以PO⊥平面ABCD.
又O,F分别为AD,BD的中点,所以OF∥AB.
又ABCD是正方形,所以OF⊥AD.
因为PA=PD=AD,所以PA⊥PD,OP=OA=.
以O为原点,OA,OF,OP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,
则A(,0,0),F(0,,0),D(-,0,0),P(0,0,),B(,a,0),C(-,a,0).
因为E为PC的中点,所以E(-,,).
易知平面PAD的一个法向量为=(0,,0),
因为=(,0,-),
且·=(0,,0)·(,0,-)=0,
所以OF⊥EF,
又因为EF 平面PAD,所以EF∥平面PAD.
(2)因为=(,0,-),=(0,-a,0),
所以·=(,0,-)·(0,-a,0)=0,
所以PA⊥CD.
又PA⊥PD,PD∩CD=D,PD 平面PDC,CD 平面PDC,
所以PA⊥平面PDC.
又PA 平面PAB,所以平面PAB⊥平面PDC.
1.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.
(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
2.用向量证明空间中的平行关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合) v1∥v2.
(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l α 存在两个实数x,y,使v=xv1+yv2.
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l α v⊥u.
(4)设平面α和β的法向量分别为u1,u2,则α∥β u1 ∥u2.
3.用向量证明空间中的垂直关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2 v1⊥v2 v1·v2=0.
(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α v∥u.
(3)设平面α和β的法向量分别为u1和u2,则α⊥β u1⊥u2 u1·u2=0.
4.两条异面直线所成角的求法
设a,b分别是两异面直线l1,l2的方向向量,则
l1与l2所成的角θ a与b的夹角β
范围 (0,] [0,π]
求法 cos θ= cos β=
5.直线与平面所成角的求法
设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=.
6.求二面角的大小
(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.
(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).
题型三 利用空间向量求空间角
命题点1 求直线和平面所成的角
例3 如图1,在Rt△ACB中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D上的点,试确定点M的位置,使得直线CM与平面A1BE所成角的正弦值为.
(1)证明 因为∠C=90°,DE∥BC,
所以BC⊥CD,BC⊥A1D,
因为CD∩A1D=D,CD 平面A1CD,A1D 平面A1CD,
所以BC⊥平面A1CD,
因为A1C 平面A1CD,所以BC⊥A1C,DE⊥A1C,
又A1C⊥CD,CD∩BC=C,
CD∩DE=D,DE∥BC,
所以A1C⊥平面BCDE.
(2)解 以C为原点,以CB,CD,CA1所在直线为x轴,y轴,z轴建立空间直角坐标系(图略),
因为=,所以AD=4,CD=2,A1C=2,
所以A1(0,0,2),B(3,0,0),E(2,2,0),D(0,2,0),
=(2,2,-2),=(-1,2,0),
=(0,-2,2).
设M点的坐标为(0,y0,z0),=λ,
则所以=(0,2-2λ,2λ),
设平面A1BE的一个法向量n=(x,y,z),
则即
令x=2,则y=1,z=,即n=(2,1,).
设直线CM与平面A1BE所成角为θ,
则sin θ==,
即=,解得λ=或,
所以M为线段A1D(靠近点A1)四分之一处的点或三分之二处的点.
命题点2 求二面角
例4 已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABCD所成的二面角的正切值为________.
答案
解析 如图,建立空间直角坐标系Dxyz,
设DA=1,由已知条件得
A(1,0,0),E(1,1,),F(0,1,),=(0,1,),=(-1,1,),
设平面AEF的法向量为n=(x,y,z),
平面AEF与平面ABCD所成的二面角为θ,由图知θ为锐角,由得
令y=1,则z=-3,x=-1,即n=(-1,1,-3),
取平面ABCD的法向量为m=(0,0,-1),
则cos θ=|cos〈n,m〉|=,tan θ=.
【同步练习】
1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
(1)证明 由已知得AM=AD=2.
取BP的中点T,连接AT,TN,
由N为PC中点知TN∥BC,TN=BC=2.
又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.
因为AT 平面PAB,MN 平面PAB,所以MN∥平面PAB.
(2)解 取BC的中点E,连接AE.
由AB=AC得AE⊥BC,
从而AE⊥AD,AE===.
以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Axyz.
由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.
设n=(x,y,z)为平面PMN的法向量,则
即可取n=(0,2,1).
于是|cos〈n,〉|==.
设AN与平面PMN所成的角为θ,则sin θ=,
∴直线AN与平面PMN所成角的正弦值为.
2、如图1所示,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图2所示.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
规范解答
解 (1)AB∥平面DEF,理由如下:
在△ABC中,由E,F分别是AC,BC中点,得EF∥AB.
又AB 平面DEF,EF 平面DEF,
∴AB∥平面DEF.[2分]
(2)以D为原点,建立如图所示的空间直角坐标系,
则A(0,0,2),B(2,0,0),C(0,2,0),E(0,,1),F(1,,0),[3分]
易知平面CDF的法向量为=(0,0,2),
设平面EDF的法向量为n=(x,y,z),
则即取n=(3,-,3),
cos〈,n〉==,
∴二面角E-DF-C的余弦值为.[8分]
(3)设P(x,y,0),则·=y-2=0,
∴y=.
又=(x-2,y,0),=(-x,2-y,0),
∵∥,∴(x-2)(2-y)=-xy,
∴x+y=2.[10分]
把y=代入上式得x=,∴P(,,0),
∴=,
∴在线段BC上存在点P(,,0),使AP⊥DE.[14分]
一、证明垂直问题的方法
(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.
(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.
二、利用向量法求空间角的方法
(1)先求出直线的方向向量和平面的法向量,将求空间角转化为求两个向量的夹角.
(2)利用数量积求向量的夹角,然后根据和所求角的关系得到空间角,但要注意所求角的大小.
1.若平面α,β的法向量分别是n1=(2,-3,5),n2=(-3,1,-4),则( )
A.α∥β B.α⊥β
C.α,β相交但不垂直 D.以上答案均不正确
答案 C
解析 ∵n1·n2=2×(-3)+(-3)×1+5×(-4)≠0,
∴n1与n2不垂直,且不共线.
∴α与β相交但不垂直.
2.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是( )
A.P(2,3,3) B.P(-2,0,1)
C.P(-4,4,0) D.P(3,-3,4)
答案 A
解析 逐一验证法,对于选项A,=(1,4,1),
∴·n=6-12+6=0,∴⊥n,∴点P在平面α内,同理可验证其他三个点不在平面α内.
3.若=λ+μ,则直线AB与平面CDE的位置关系是( )
A.相交 B.平行
C.在平面内 D.平行或在平面内
答案 D
解析 ∵=λ+μ,∴、、共面,
∴AB与平面CDE平行或在平面CDE内.
4.设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t等于( )
A.3 B.4 C.5 D.6
答案 C
解析 ∵α⊥β,则u·v=-2×6+2×(-4)+4t=0,∴t=5.
5.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是( )
A.斜交 B.平行
C.垂直 D.MN在平面BB1C1C内
答案 B
解析 建立如图所示的空间直角坐标系,
由于A1M=AN=,
则M(a,,),N(,,a),=(-,0,).
又C1D1⊥平面BB1C1C,
所以=(0,a,0)为平面BB1C1C的一个法向量.
因为·=0,
所以⊥,又MN 平面BB1C1C,
所以MN∥平面BB1C1C.
6.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为( )
A. B. C. D.
答案 B
解析 以A为原点建立如图所示的空间直角坐标系Axyz,
设棱长为1,则A1(0,0,1),E(1,0,),D(0,1,0),
∴=(0,1,-1),=(1,0,-).
设平面A1ED的一个法向量为n1=(1,y,z),
则有
即∴即n1=(1,2,2).
∵平面ABCD的一个法向量为n2=(0,0,1),
∴cos〈n1,n2〉==,
即所成的锐二面角的余弦值为.
7.已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n=(-1,-1,-1),则不重合的两个平面α与β的位置关系是_______________.
答案 α∥β
解析 设平面α的法向量为m=(x,y,z),
由m·=0,得x·0+y-z=0 y=z,
由m·=0,得x-z=0 x=z,取x=1,
∴m=(1,1,1),m=-n,
∴m∥n,∴α∥β.
8.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是________.
答案 ①②③
解析 ∵·=0,·=0,
∴AB⊥AP,AD⊥AP,则①②正确.
又与不平行,
∴是平面ABCD的法向量,则③正确.
∵=-=(2,3,4),=(-1,2,-1),∴与不平行,故④错误.
9.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________.
答案 1
解析 以D1为原点,D1A1,D1C1,D1D所在直线分别为
x,y,z轴建立空间直角坐标系,设CE=x,DF=y,
则易知E(x,1,1),B1(1,1,0),F(0,0,1-y),B(1,1,1),
∴=(x-1,0,1),∴=(1,1,y),∵B1E⊥平面ABF,
∴·=(1,1,y)·(x-1,0,1)=0 x+y=1.
*10.如图,圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO中点,动点P在圆锥底面内(包括圆周).若AM⊥MP,则点P形成的轨迹长度为________.
答案
解析 由题意可知,建立空间直角坐标系,如图所示.
则A(0,-1,0),B(0,1,0),S(0,0,),M(0,0,),设P(x,y,0),
∴=(0,1,),=(x,y,-),即y=,
∴点P的轨迹方程为y=.
根据圆的弦长公式,可得点P形成的轨迹长度为2 =.
11.如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.求证:
(1)DE∥平面ABC;(2)B1F⊥平面AEF.
证明 (1)以A为坐标原点,AB,AC,AA1所在直线为
x轴,y轴,z轴,建立如图所示空间直角坐标系Axyz,
令AB=AA1=4,
则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),B1(4,0,4).
取AB中点为N,连接CN,
则N(2,0,0),C(0,4,0),D(2,0,2),
∴=(-2,4,0),=(-2,4,0),
∴=,∴DE∥NC,
又∵NC 平面ABC,DE 平面ABC.
故DE∥平面ABC.
(2)=(-2,2,-4),=(2,-2,-2),=(2,2,0).
·=(-2)×2+2×(-2)+(-4)×(-2)=0,
·=(-2)×2+2×2+(-4)×0=0.
∴⊥,⊥,即B1F⊥EF,B1F⊥AF,
又∵AF∩EF=F,AF 平面AEF,EF 平面AEF,
∴B1F⊥平面AEF.
12.在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示.
(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
(1)证明 ∵平面ABD⊥平面BCD,
平面ABD∩平面BCD=BD,
AB 平面ABD,AB⊥BD,
∴AB⊥平面BCD.
又CD 平面BCD,∴AB⊥CD.
(2)解 过点B在平面BCD内作BE⊥BD,如图所示.
由(1)知AB⊥平面BCD,BE 平面BCD,BD 平面BCD.
∴AB⊥BE,AB⊥BD.
以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.
依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M(0,,),
则=(1,1,0),=(0,,),=(0,1,-1).
设平面MBC的法向量n=(x0,y0,z0),
则即
取z0=1,得平面MBC的一个法向量n=(1,-1,1).
设直线AD与平面MBC所成角为θ,
则sin θ=|cos〈n,〉|==,
即直线AD与平面MBC所成角的正弦值为.
*13.如图,长方体ABCD—A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的一点,PC=λPD.
(1)若A1C⊥平面PBC1,求λ的值;
(2)设λ1=1,λ2=3所对应的点P为P1,P2,二面角P1—BC1—P2的大小为θ,求cos θ的值.
解 方法一 (1)∵A1C⊥BC1,
若A1C⊥PB,则A1C⊥平面PBC1,只需A1C⊥PB即可,
在矩形ABCD中,=,解得CP=,PD=,λ=.
(2)过点C作CH⊥BC1交BC1于点H,连接P1H,P2H(图略),则∠P1HP2就是所求二面角的一个平面角θ.
∵P1C=1,P2C=,CH=,
∴tan∠P1HC=,tan∠P2HC=,
tan θ=tan(∠P2HC-∠P1HC)=,
所求余弦值为.
方法二 (1)建立如图所示空间直角坐标系Oxyz,
则B(1,2,0),C1(0,2,1),A1(1,0,1),C(0,2,0),
设P(0,,0),
则=(-1,2,-1),=(-1,0,1),
=(-1,-2,0),
若A1C⊥平面PBC1,
则即
解得λ=.
(2)由P1(0,1,0),P2(0,,0),
得=(-1,-1,0),=(-1,0,1),
=(-1,-,0).
设平面BC1P1与平面BC1P2的法向量分别是n1,n2,
由得n1=(1,-1,1),
由得n2=(3,-2,3),
∴cos θ===.1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)平面的单位法向量是唯一确定的.( )
(2)若两平面的法向量平行,则两平面平行.( )
(3)若两直线的方向向量不平行,则两直线不平行.( )
(4)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )
(5)两异面直线夹角的范围是(0,],直线与平面所成角的范围是[0,],二面角的范围是[0,π].( )
(6)若二面角α-a-β的两个半平面α,β的法向量n1,n2所成角为θ,则二面角α-a-β的大小是π-θ.( )
2、已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是( )
A.(-1,1,1) B.(1,-1,1)
C.(-,-,-) D.(,,-)
3、如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1所成角的余弦值为( )
A. B.
C. D.
4、设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为________;当v=(4,-4,-10)时,α与β的位置关系为________.
5、如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
题型一 利用空间向量证明平行问题
例1 如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.
引申探究
本例中条件不变,证明平面EFG∥平面PBC.
【同步练习】
1、正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD.
题型二 利用空间向量证明垂直问题
例2 如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=AB,B1C1綊BC,二面角A1-AB-C是直二面角.求证:
(1)A1B1⊥平面AA1C;
(2)AB1∥平面A1C1C.
【同步练习】
1、如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,设E,F分别为PC,BD的中点.
(1)求证:EF∥平面PAD;
(2)求证:平面PAB⊥平面PDC.
1.直线的方向向量与平面的法向量的确定
(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.
(2)平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
2.用向量证明空间中的平行关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合) v1∥v2.
(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l α 存在两个实数x,y,使v=xv1+yv2.
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l α v⊥u.
(4)设平面α和β的法向量分别为u1,u2,则α∥β u1 ∥u2.
3.用向量证明空间中的垂直关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2 v1⊥v2 v1·v2=0.
(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α v∥u.
(3)设平面α和β的法向量分别为u1和u2,则α⊥β u1⊥u2 u1·u2=0.
4.两条异面直线所成角的求法
设a,b分别是两异面直线l1,l2的方向向量,则
l1与l2所成的角θ a与b的夹角β
范围 (0,] [0,π]
求法 cos θ= cos β=
5.直线与平面所成角的求法
设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=.
6.求二面角的大小
(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.
(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).
题型三 利用空间向量求空间角
命题点1 求直线和平面所成的角
例3 如图1,在Rt△ACB中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.
(1)求证:A1C⊥平面BCDE;
(2)若M是A1D上的点,试确定点M的位置,使得直线CM与平面A1BE所成角的正弦值为.
命题点2 求二面角
例4 已知点E,F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则平面AEF与平面ABCD所成的二面角的正切值为________.
【同步练习】
1、如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.
(1)证明MN∥平面PAB;
(2)求直线AN与平面PMN所成角的正弦值.
2、如图1所示,正△ABC的边长为4,CD是AB边上的高,E,F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B,如图2所示.
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E-DF-C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.
一、证明垂直问题的方法
(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.
(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然 ,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.
二、利用向量法求空间角的方法
(1)先求出直线的方向向量和平面的法向量,将求空间角转化为求两个向量的夹角.
(2)利用数量积求向量的夹角,然后根据和所求角的关系得到空间角,但要注意所求角的大小.
1.若平面α,β的法向量分别是n1=(2,-3,5),n2=(-3,1,-4),则( )
A.α∥β B.α⊥β
C.α,β相交但不垂直 D.以上答案均不正确
2.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是( )
A.P(2,3,3) B.P(-2,0,1)
C.P(-4,4,0) D.P(3,-3,4)
3.若=λ+μ,则直线AB与平面CDE的位置关系是( )
A.相交 B.平行
C.在平面内 D.平行或在平面内
4.设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t等于( )
A.3 B.4 C.5 D.6
5.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是( )
A.斜交 B.平行 C.垂直 D.MN在平面BB1C1C内
6.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为( )
A. B. C. D.
7.已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n=(-1,-1,-1),则不重合的两个平面α与β的位置关系是_______________.
8.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是________.
9.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________.
*10.如图,圆锥的轴截面SAB是边长为2的等边三角形,O为底面中心,M为SO中点,动点P在圆锥底面内(包括圆周).若AM⊥MP,则点P形成的轨迹长度为________.
如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且
AB=AA1,D,E,F分别为B1A,C1C,BC的中点.求证:
(1)DE∥平面ABC;(2)B1F⊥平面AEF.
12.在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图所示.
(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.
*13.如图,长方体ABCD—A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的一点,PC=λPD.
(1)若A1C⊥平面PBC1,求λ的值;
(2)设λ1=1,λ2=3所对应的点P为P1,P2,二面角P1—BC1—P2的大小为θ,求cos θ的值.