1
泰安一中新校区2025届高三上学期期中模拟考试
数学试题
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.
1. 已知集合 ,则 ()
A. B. C. D.
2. 命题“,”是真命题的一个充分不必要条件是()
A. B.
C. D.
3. 已知奇函数,则()
A. B. 0 C. 1 D.
4. 设公差的等差数列中,,,成等比数列,则()
A. B. C. D.
5. 已知,都是锐角,,,求()
A. B. C. D.
6. 函数的零点个数为()
A. 1 B. 0 C. 3 D. 2
7. 在中,内角所对的边分别为,若成等差数列,则的最小值为()
A. 3 B. 4 C. 5 D. 6
8. 已知函数的定义域为R,且满足,,则下列结论正确的是()
A. B. 方程有解
C. 是偶函数 D. 是偶函数
二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分,部分选对的得2分,有选错的得0分.
9. 设正实数满足,则()
A. 最小值为 B. 的最小值为
C. 的最小值为 D. 的最小值为
10. 已知函数图象过点和,且满足,则下列结论正确的是()
A.
B.
C. 当时,函数值域为
D. 函数有三个零点
11. 已知是数列的前n项和,且,则下列选项中正确的是()
A
B.
C. 若,则
D. 若数列单调递增,则取值范围是
三、填空题:本题共3小题,每小题5分,共15分.
12. 已知数列为正项等比数列,,若是数列的前项积,则当取最大值时的值为______.
13. 为了测量隧道口、间的距离,开车从点出发,沿正西方向行驶米到达点,然后从点出发,沿正北方向行驶一段路程后到达点,再从点出发,沿东南方向行驶400米到达隧道口点处,测得间的距离为1000米.则隧道口间的距离是___________.
14. 函数的导函数为,若在的定义域内存在一个区间在区间上单调递增,在区间上单调递减,则称区间为函数的一个“渐缓增区间”.若对于函数,区间是其一个渐缓增区间,那么实数的取值范围是______.
四、解答题:本题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.
15. 记的内角A,B,C的对边分别为a,b,c,已知
(1)证明:
(2)若,,求的周长.
16. 已知函数.
(1)求函数的单调递减区间;
(2)将函数图象上所有点的横坐标缩短为原来的(纵坐标不变),再向右平移个单位,得到函数的图象,若,且,求的值.
17. 已知数列是以公比为3,首项为3的等比数列,且.
(1)求出的通项公式;
(2)设,数列前n项和为,若不等式对任意的恒成立,求实数λ的取值范围.
18. 已知函数,其中是实数.
(1)若,求的单调区间;
(2)若函数不具有单调性,求实数的取值范围;
(3)若恒成立,求的最小值.
19. 对于任意正整数n,进行如下操作:若n为偶数,则对n不断地除以2,直到得到一个奇数,记这个奇数为;若n为奇数,则对不断地除以2,直到得出一个奇数,记这个奇数为.若,则称正整数n为“理想数”.
(1)求20以内的质数“理想数”;
(2)已知.求m的值;
泰安一中新校区2025届高三上学期期中模拟考试
数学试题
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.
1.
【答案】D
2.
【答案】D
3.
【答案】A
4.
【答案】C
5.
【答案】A
6.
【答案】A
7.
【答案】A
8.
【答案】B
二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分,部分选对的得2分,有选错的得0分.
9.
【答案】BD
10.
【答案】ABD
11.
【答案】ABC
【解析】
三、填空题:本题共3小题,每小题5分,共15分.
12.【答案】
13.
【答案】
14..
【答案】
四、解答题:本题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.
15.
【解析】
【分析】(1)利用正弦函数的和差公式,结合正弦定理与余弦定理的边角变换,化简整理即可得证;
(2)利用(1)中结论与余弦定理分别求得,从而求得,由此得解.
【小问1详解】
已知,
可化为,
由正弦定理可得,即,
由余弦定理可得,
整理得.
小问2详解】
当,时,,
,
所以,解得,
所以的周长为
16.
【解析】
【分析】(1)利用两角和的正、余弦公式及诱导公式化简函数的解析式,再由整体角范围求解不等式可得单调区间;
(2)由伸缩变换与平移变换得解析式,得,根据整体角范围求余弦值,再由角的关系,利用两角和的余弦公式求解可得.
【小问1详解】
.
由,
解得
即时,函数单调递减,
所以函数的单调递减区间为;
【小问2详解】
将函数图象上所有点的横坐标缩短为原来的(纵坐标不变),
则得到函数的图象,再向右平移个单位,得到函数的图象,
所以.
若,则, .
由,得,又,
所以,则,
故
.
故的值为.
17.
【解析】
【分析】(1)由利用累加法求出的通项公式,进而求出的通项公式.
(2)由得,利用错位相减法求出,不等式可转化为,利用的单调性求出最小值即可.
【小问1详解】
∵数列是首项为3,公比为3的等比数列,∴,
∴当时,,
即,∴,∴.
又也满足上式,∴数列的通项公式为;
【小问2详解】
由(1),可得,
∴①,
②,
由①-②,得,
∴,
∴不等式可化为,
即对任意的恒成立,
令且为递增数列,即转化为.
又,所以,
综上,λ的取值范围是.
18.
【解析】
【分析】(1)求出导函数,解不等式即可求解;
(2)由题意在定义域内有异号零点,利用导数研究其单调性,结合零点存在性定理列不等式求解即可;
(3)易知当时,,再证能成立,即证:存在,使得恒成立,构造函数,利用导数研究其最值即可求解.
【小问1详解】
当时,,则,
令,解得,令,解得,
所以在单调递增,单调递减;
【小问2详解】
函数的图象是连续的,且不具有单调性,
在定义域内有正有负(有异号零点),
记,则在为负,为正,
在单调递减,单调递增,
故存在,使得,
只需,即.
【小问3详解】
对任意都成立,当时,,
下证:能成立,即证:存在,使得恒成立,
记,故(必要性),
而,则,解得,
只需证:恒成立,
,由(2)知,其在单调递减,单调递增,
在为正,在为负,在为负,
在单调递增,单调递减,,得证;
综上,的最小值为0.
19.
【解析】
【分析】(1)根据“理想数”概念,结合列举法可解;
(2)分析题意知道必为奇数,则必为偶数,结合整除知识得解;
(3)将数列适当放缩,后分组,结合等比数列求和公式计算即可.
【小问1详解】
以内质数为,
,故,所以为“理想数”;
,而,故不是“理想数”;
,而,故是“理想数”;
,而,故不是“理想数”;
,而,故不是“理想数”;
,而,故不是“理想数”;
,而,故不是“理想数”;
,而,故不是“理想数”;
和5为两个质数“理想数”;
【小问2详解】
由题设可知必为奇数,必为偶数,
存在正整数,使得,即:
,且,
,或,或,解得,或,
,或,即的值为12或18.
【小问3详解】
显然偶数"理想数"必为形如的整数,
下面探究奇数"理想数",不妨设置如下区间:,
若奇数,不妨设,
若为"理想数",则,且,即,且,
①当,且时,;
②当时,;
,且,
又,即,
易知为上述不等式的唯一整数解,
区间]存在唯一的奇数"理想数",且,
显然1为奇数"理想数",所有的奇数"理想数"为,
所有奇数"理想数"的倒数为,
,即.
PAGE
第1页