9.2 用样本估计总体 教学设计

文档属性

名称 9.2 用样本估计总体 教学设计
格式 docx
文件大小 45.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2024-12-03 16:13:11

图片预览

文档简介

用样本估计总体
【教学目标】
1.理解样本数据标众数、中位数、平均数的意义和作用,学会计算数据的众数、中位数、平均数.
2.理解样本数据方差、标准差的意义和作用,学会计算数据的方差、标准差.
【教学重难点】
会用样本的基本数字特征来估计总体的基本数字特征.
【教学过程】
一、基础知识
1.众数、中位数、平均数
众数、中位数、平均数定义
(1)众数:一组数据中出现次数最多的数.
(2)中位数:把一组数据按从小到大(或从大到小)的顺序排列,处在中间位置的数(或中间两个数的平均数)叫做这组数据的中位数.
(3)平均数:如果n个数x1,x2,…,xn,那么=(x1+x2+…+xn)叫做这n个数的平均数.
思考:平均数、中位数、众数中,哪个量与样本的每一个数据有关,它有何缺点?
答案:平均数与样本的每一个数据有关,它可以反映出更多的关于样本数据总体的信息,但是平均数受数据中极端值的影响较大.
2.方差、标准差
标准差、方差的概念及计算公式
(1)标准差是样本数据到平均数的一种平均距离,一般用s表示.
s=.
(2)标准差的平方s2叫做方差.
s2=[(x1-)2+(x2-)2+…+(xn-)2](xn是样本数据,n是样本容量,是样本平均数).
(3)标准差(或方差)越小,数据越稳定在平均数附近.s=0时,每一组样本数据均为.
二、合作探究
1.众数、中位数、平均数的计算
(1)某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各1人,则该小组数学成绩的平均数、众数、中位数分别为( )
A.85,85,85 B.87,85,86
C.87,85,85 D.87,85,90
(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).
已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )
A.2,5 B.5,5
C.5,8 D.8,8
答案(1)C (2)C
解析(1)平均数为=87,众数为85,中位数为85.
(2)结合茎叶图上的原始数据,根据中位数和平均数的概念列出方程进行求解.
由于甲组数据的中位数为15=10+x,所以x=5.又乙组数据的平均数为=16.8,所以y=8,所以x,y的值分别为5,8.
【教师小结】平均数、众数、中位数的计算方法:
平均数一般是根据公式来计算的;计算众数、中位数时,可先将这组数据按从小到大或从大到小的顺序排列,再根据各自的定义计算.
2.标准差、方差的计算及应用
甲、乙两名战士在相同条件下各打靶10次,每次命中的环数分别是:
甲:8,6,7,8,6,5,9,10,4,7;
乙:6,7,7,8,6,7,8,7,9,5.
(1)分别计算以上两组数据的平均数;
(2)分别求出两组数据的方差;
(3)根据计算结果,估计两名战士的射击情况.若要从这两人中选一人参加射击比赛,选谁去合适?
解(1)甲=×(8+6+7+8+6+5+9+10+4+7)=7(环),
乙=×(6+7+7+8+6+7+8+7+9+5)=7(环).
(2)由方差公式s2=[(x1-)2+(x2-)2+…+(xn-)2],得s=3,s=1.2.
(3)甲=乙,说明甲、乙两战士的平均水平相当.
又s>s说明甲战士射击情况波动比乙大.
因此,乙战士比甲战士射击情况稳定,从成绩的稳定性考虑,应选择乙参加比赛.
【教师小结】
(1)方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小.
(2)样本标准差反映了各样本数据围绕样本平均数波动的大小,标准差越小,表明各样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.
(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数据分布情况,而样本数据的离散程度是由标准差来衡量的.
三、课堂总结
1.标准差的平方s2称为方差,有时用方差代替标准差测量样本数据的离散程度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.
2.现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.
3.在抽样过程中,抽取的样本是具有随机性的,因此样本的数字特征也有随机性,用样本的数字特征估计总体的数字特征,是一种统计思想,没有唯一答案.
【课堂检测】
1.某市2017年各月的平均气温(℃)数据的茎叶图如图:
则这组数据的中位数是( )
A.19 B.20
C.21.5 D.23
答案 B
解析 由茎叶图知,平均气温在20℃以下的有5个月,在20℃以上的也有5个月,恰好是20℃的有2个月,由中位数的定义知,这组数据的中位数为20.故选B.
2.下列关于平均数、中位数、众数的说法中正确的一个是( )
A.中位数可以准确地反映出总体的情况
B.平均数可以准确地反映出总体的情况
C.众数可以准确地反映出总体的情况
D.平均数、中位数、众数都有局限性,都不能准确地反映出总体的情况
答案 D
3.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得的数据,则A,B两样本的下列数字特征对应相同的是( )
A.众数 B.平均数
C.中位数 D.标准差
答案 D
4.某校开展“爱我母校,爱我家乡”摄影比赛,七位评委为甲,乙两名选手的作品打出的分数的茎叶图如图所示(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲,乙两名选手得分的平均数分别为a1,a2,则一定有( )
A.a1>a2
B.a2>a1
C.a1=a2
D.a1,a2的大小与m的值有关
答案 B
解析 由茎叶图知,
a1=80+=84,
a2=80+=85,故选B.
5.若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为________.
答案 16
解析 设样本数据x1,x2,…,x10的标准差为s,则s=8,
可知数据2x1-1,2x2-1,…,2x10-1的标准差为2s=16.
8 / 8