人教A版必修五第二章第二节第6课时:数列求通项(课件17张PPT+教案+练习等9份打包)

文档属性

名称 人教A版必修五第二章第二节第6课时:数列求通项(课件17张PPT+教案+练习等9份打包)
格式 zip
文件大小 485.3KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-03-29 13:54:09

文档简介

学情分析
知识基础
初中在概括一列数字特征时就利用过数列的思想,本节课选自人教A版数学必修5第二章,在此之前已经学习了特殊数列归纳求通项的方法,而且对等差、等比数列的学习也使同学们对此两类特殊数列有了更进一步的认识;
认知水平与能力
高一年级学生已初步具有一定的抽象概括、类比归纳、推理论证等能力 。但学生仍有一定的认知困难,主要有两个方面:
1、累加法、累乘法和构造等比数列的方法抽象且计算量大。
2、在已知前n项和求通项的过程中出现的两类形式不易接受和灵活运用。
数列求通项效果分析
本节课难易适中符合本班学生的认知规律,并且学生已有了相应的知识储备,在知识的接受和应用上效果还是很不错的,但个别地方也存在不足之处,比方说不能照顾到每一个学生、课堂训练时间略短一点、学生展示时讲解达不到老师的期望水平等,但为了更好的锻炼学生还是应该继续坚持的,我相信经过长时间的尝试和锻炼不仅能提升学生解决问题的应试能力,而且还能锻炼学生的应变能力了等。
数列求通项教学设计
周村区实验中学 申臻臻
一、目标分析
1.知识目标 使学生掌握等差、等比数列求通项的公式法,特殊数列求通项的累加、累乘法,一般数列已知前n项和求通项的做法和构造新数列的一般方法。
2.能力目标 培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过累加、累乘及构造等比数列的方法探究,培养学生分析探索能力,增强运用公式解决实际问题的能力等.
3.情感目标 通过教师引导学生经历直观感知、操作确认等交流探索活动,激发学生的学习兴趣,使学生经历数学思维的过程,获得成功的体验.
二、教学重点、难点
重点 等差等比数列公式的灵活运用,累加、累乘法的选择,已知求通项的几种形式及新数列的构造方法。
难点 累加法、累乘法的运用,新数列的构造和运用。
三、教学模式与教法、学法 采用问题启发、讲练结合、归纳总结相结合的教学方法,让学生掌握并灵活应用数列求通项的几种常用方法。
教师的教法? 讲练结合及时总结反馈.
学生的学法? 积极主动交流,合作交流展示。
四、教具:投影仪、多媒体课件、白板。
五、教学基本流?
(一)成果展示 (二)课标展示 (三)合作探究 (四)典例探究 (五)小结反思
六、教学过程
教学
环节
教 学 程 序
师 生 活 动
设计意图
成果展示
在学案中选出十几份做的好的同学的学案展示
教师展示,学生观看。
调动学习的热情和积极性
课标分析
?分析本节课的知识要点和重难点
教师分析学生识记
?有目标有方向,
知识梳理
结合课件回顾学过的公式和结论
师问生答,教师板书规范。
回顾知识巩固深化
学情检测
结合课件以学生回答的形式,对答案找问题。
学生说出自己的答案,教师展示正确的答案。
更深入了解学情
合作探究
学生讨论解决学案中的思考题,学生投影仪展示。
教师布置讨论任务定好讨论时间,学生小组讨论并主动展示。
培养学生的合作交流能力,分析问题并解决问题的能力,通过展示也可以进一步深化对问题的认识,并能及时的暴露问题。
典例探究
典例探究
小结反思
归纳总结
类型一 已知Sn求an
例1.
⑴在数列中,已知,求通项公式.
⑵在数列中,已知,求通项公式.
(3)在数列中求通项公式.
?
??
类型二 累加法
例2.
(1)在数列中,,求通项公式.(2)在数列中,
???????????????????????????????????????????????????????????????
类型三 构造等比数列
例3.已知数列{an}中,a1=1,an+1=2an+3.
(1)证明:数列{}为等比数列.
(2)
变式训练:已知数列{an}中,a1=1,.
证明:数列{}为等比数列.
?
?
?【课堂总结】
这节课主要学习哪些方法?
对每种方法的表现形式的体会有那些?
体会到了哪些数学思想方法?
?
?教师展示问题并分析问题:本部分内容学生掌握的很好,但在过程书写上存在问题,本环节主要展示过程的完整形式。学生规范自己的解题过程。
?教师讲解方法并展示详细求解过程学生归纳使用范围
?
?
学生自主探索,合作交流。教师规范解题步骤。
学生投影展示过程大家一起规范纠错
教师引导学生自主完成知识、思想方法的总结。
引导学生动手实践体会一种方法不同类型的解体策略
让学生用化归的思想来思考问题.
?
深化学生对此类方法的认识,培养观察归纳等能力。
?培养学生严谨的语言表达能力。
让学生由感性认识上升到理性认识,体现了从特殊到一般再到特殊的知识认知过程。通过例题巩固深化知识和方法。
通过反思与小结使学生对本节课的知识有一个系统全面的认识。数学思想方法是数学的灵魂,引导学生自主完成转化、类比等思想方法的总结,从而更好的理解数学的本质。
?
?

?

?

?

?
[课后反馈]
1.已知一个等差数列的前几项为:-1,3,7,11,则第n项为 .
2.在等比数列中,已知,则= .
3.已知数列试写出其一个通项公式: .
4.已知数列前项和,则_____________.
5.已知数列前项和,则_____________.
?
课后作业:评测练习
?
课后完成进一步巩固,深化理解。
?
?
?
?
?
?
学生课后自主完成。
巩固本节知识,培养学生积极主动、勇于探索的精神。
七、板书设计:
? 1.等差数列的通项公式和求和公式
2.等比数列的通项公式和求和公式
???? (主板书)
幕布
?学生展示
?
??? (副板书)
八、教学反思:
??????????????????????????????????????????????????????????????????????
后附学案设计
课题:数列求通项
【课标展示】
教学目标:掌握数列求通项的六种常用方法:观察法、公式法、已知Sn求an、累加法、累乘法、构造等比数列的方法。
重难点:已知Sn求an、累加法、构造等比数列的方法。
【知识梳理】
1.等差数列的通项公式:
等差数列的性质:在等差数列{an}中,若m+n=p+q(m,n,p,q∈N*),则——————.
2.等比数列的通项公式:
等比数列的性质: 若m+n=p+q(m,n,p,q∈N*),则am·an= .
3.an与Sn的关系:
【学情检测】
(1).归纳数列1,-3,5,-7,9,……的通项公式________________________.
(2).已知数列中,,则 .
(3).已知是等差数列,且,则该数列的公差d= .
(4).在等比数列{an}中,a2=4,a5=-,则q= ;an= .
(5).在递增等比数列中,a1a9=64,a3+a7=20.求a11=___________________.
(6).已知数列满足,则 .
(7). 已知数列满足,则 .
思考:对于上面的第6,7题,如果要求的是第n项,应该如何处理?
方法总结:1.观察归纳法:_________.2.公式法:?____________.
3.累加法:______________4.累乘法:_____________.
【典例探究】
解题札记
类型一 已知Sn求an
例1.⑴在数列中,已知,求通项公式.
⑵在数列中,已知,求通项公式.
(3)在数列中求通项公式.
类型二 累加法
例2. (1)在数列中,,求通项公式.(2)在数列中,
类型三 构造等比数列
例3.已知数列{an}中,a1=1,an+1=2an+3.
(1)证明:数列{}为等比数列.(2)
变式训练:已知数列{an}中,a1=1,.
证明:数列{}为等比数列.(2)
【课堂总结】
1.
2.
3.
[课后反馈]
1.已知一个等差数列的前几项为:-1,3,7,11,则第n项为 .
2.在等比数列中,已知,则= .
3.已知数列试写出其一个通项公式: .
4.已知数列前项和,则_____________.
5.已知数列前项和,则_____________.
数列求通项教材分析
教材分析??????
1. 教学内容
数列求通项是人教A版必修五第二章第二节第6课时,主要内容是学习数列求通项的几种常用方法。
2.?? 地位与作用
数列求通项是高中数学数列的核心内容之一,是高考中的必考知识点,前面已学习了等差、等比数列的通项公式、求和公式和性质等,本节是对前面所学内容的延续和拓展。因此,本节的学习有着极其重要的地位。
数列求通项观评记录
点评:事实上,等差或等比数列的通项公式均可用本课所述方法推证得到,这也是三种方法的教材背景.它们的求解过程就是把递推关系式像“链条”一样,按n, n-1, n-2……,3, 2, 1,把a n逐次“拉开”,层层迭代.这种方法我们称为迭代法.这种解题方法的基础是递推的思想方法.《普通高中数学课程标准》第85页指出:“迭代法是解决问题的数学方法之一,应使学生结合具体问题去体会迭代法的意义.
至此,形如a n+1 = an + f (n) 的数列,可用迭代法、累加法求通项;
形如a n+1 = an · f (n) 的数列,也可用迭代法、累乘法求通项.
普通高中《数学课程标准》第35页指出“能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”.可见,让学生运用已有的等差、等比数列知识去解决新的数列问题是课程标准的要求,也是高考“能力立意”的要求,应引起师生的重视.
评测练习
1.数列的前n项和,则数列为( )
A.等比数列 B.等差数列
C.既为等差又为等比数列 D.既不是等差也不是等比数列
2.数列的前n项和,则其通项公式 .
3.已知数列满足,则 .
4. 已知数列{an}的前n项和为,点(n,)(n∈N*)在函数的图像上,求数列的通项公式.
5. 已知是等差数列,是各项为正数的等比数列,且,
,求数列和的通项公式.
(选做)6.已知数列满足
⑴令,证明:是等比数列;
⑵求的通项公式.

答案
课件17张PPT。数列求通项普通高中课程标准实验教科书 数学⑤·必修(A版)成果展优普通高中课程标准实验教科书 数学⑤·必修(A版)课标展示教学目标:掌握数列求通项的六种常用方法:观察法、公式法、已知Sn求an、累加法、累乘法、构造等比数列的方法。
重难点:已知Sn求an、累加法、构造等比数列的方法。普通高中课程标准实验教科书 数学⑤·必修(A版)知识梳理 1.等差数列的通项公式 等差数列的性质在等差数列{an}中,若m+n=p+q(m,n,p,q∈N*),则__________________.普通高中课程标准实验教科书 数学⑤·必修(A版)知识梳理2.等比数列的通项公式: 等比数列的性质:若m+n=p+q(m,n,p,q∈N*),则am·an=普通高中课程标准实验教科书 数学⑤·必修(A版)知识梳理 3.an与Sn的关系:普通高中课程标准实验教科书 数学⑤·必修(A版)学情检测22普通高中课程标准实验教科书 数学⑤·必修(A版)学情检测思考:对于第6、7题,如果要求的是第n项,应该如何处理? (1)(2)(3)(4)(5)(6)(7)前进到普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究解:综上得,普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究(1)返回思考普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究已知数列{an}中,a1=1,an+1=2an+3.例3典型错误普通高中课程标准实验教科书 数学⑤·必修(A版)典例探究普通高中课程标准实验教科书 数学⑤·必修(A版)课堂总结1.知识上:等差、等比数列的通项公式、求和公式及性质
2.方法上:六种求通项的方法
3.思想上:特殊与一般的思想,分类思想,换元的思想等。普通高中课程标准实验教科书 数学⑤·必修(A版)当堂反馈数列求通项的教学反思
通过批阅学案使我更深入的了解了学生的认知能力和处理问题的不足之处,针对这些问题我设计了本节课的教学思路和教学方式,一开始展示了做的比较好的学生的学案来鼓舞和激励学生,引发学习兴趣和热情。本课中设计了互动和展示环节,让学生体现自己的主体地位,教师展示规范的解答过程,让学生纠正错误及时改正。这些都取得了较好的效果,但也存在一些不足之处比方说:平时个别学生展示的机会较少在问题表达上还有欠缺,在讨论环节有个别学生不能迅速的参与进去。在时间安排上由于前面知识梳理和学情检测中耗费时间较长,以至于后面构造数列问题的讲解时间不够充分。
总之,在以后的教学工作中需要学习的地方还很多,望领导和专家批评指正。

数列求通项的课标分析
由于数列求通项公式历来是高考的重点和热点题型,自然成为师生研究的重点,各种求解方法也多见于各种杂志和书籍,但仍没摆脱“类型 + 方法”的桎梏,致使学生面对具体问题仍束手无策.那么,在新课程全面实施,数学课程应该返璞归真,淡化问题类型,注重解决问题最本质的方法的今天,本类问题的求解思路是什么?哪些方法是通法?这都是我们要重点关注的。