高中数学人教A版选修2-1《1.3 简单的逻辑联结词》教案 (2份打包)

文档属性

名称 高中数学人教A版选修2-1《1.3 简单的逻辑联结词》教案 (2份打包)
格式 zip
文件大小 32.7KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-03-30 19:33:36

文档简介

课题: 1.3.3简单的逻辑联结词——非 总第 个教案
课型: 新授课 上课时间: 年 月 日星期____
教学目标 1.知识与技能(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题
2.过程与方法通过复习旧知识引入新的知识,通过例题教学让学生理解逻辑联结词“非”的含义。。
3.情感、态度与价值观通过学生在学习过程中的感受、体验、认识,改变学生学习方式,提高学习质量。
教学重点 理解逻辑联结词“非”的含义
教学难点 1、正确理解命题“非命题”真假的规定和判定.2、会进行“非命题”与否命题的区别.
教学方法 通过观察.类比.思考.交流和讨论等,理解命题的之间关系.
教学过程: 批 注
活动一:创设情景、引入课题 (5分钟)问题1:请同学们回顾上一节课学习过的内容:1、什么是且命题?什么是或命题?2、如果判断一个“且命题”、“或命题”的真假性?问题2:思考、分析学生探究过程:1、思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1) ①35能被5整除; ②35不能被5整除;(2) ①方程x2+x+1=0有实数根。 ②方程x2+x+1=0无实数根。学生很容易看到,在每组命题中,命题②是命题①的否定。点题:今天我们学习逻辑联结词“非”活动二:师生交流、进入新知,(20分钟)1、定义一般地,对一个命题p全盘否定,就得到一个新命题,记作“¬p”读作“非p”或“p的否定”。3、命题“¬p”与命题p的真假间的关系命题“¬p”与命题p的真假之间有什么联系?引导学生分析前面所举例子中命题p与命题¬p的真假性,概括出这两个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。第(2)组命题中,命题①是假命题,而命题②是真命题。由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;p¬P真假假真问题3:让学生思考:命题的否定与原命题的否命题有什么区别?4、命题的否定与否命题的区别命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。例如:如果命题p:5是15的约数,那么命题¬p:5不是15的约数;p的否命题:若一个数不是5,则这个数不是15的约数。显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。活动三:合作学习、探究新知(18分钟)例1:写出下表中各给定语的否定语。若给定语为等于大于是都是至多有一个至少有一个其否定语分别为 分析:“等于”的否定语是“ ( http: / / www.21cnjy.com )不等于”;
    “大于”的否定语是“小于或者等于”;
    “是”的否定语是“不是”;
    “都是”的否定语是“不都是”;
    “至多有一个”的否定语是“至少有两个”;
    “至少有一个”的否定语是“一个都没有”;例2:写出下列命题的否定,判断下列命题的真假(1)p:y = sinx 是周期函数;(2)p:3<2;(3)p:空集是集合A的子集。解略.练习:P18:3活动四:归纳整理、提高认识(2分钟)什么是非命题?如果判断一个“且命题”、“或命题”的真假性?活动五:作业布置、提高巩固1.书面作业:书本P18:A组3 P30:A组4、6板书设计: 简单逻辑联结词——非非命题 例1: 例2:2、非命题的真假性判断
教学后记:课题: 1.3.1-2简单的逻辑联结词——且与或 总第 个教案
课型: 新授课 上课时间: 年 月 日星期____
教学目标 1.知识与技能(1)掌握逻辑联结词“或、且”的含义(2)正确应用逻辑联结词“或、且”解决问题(3)掌握真值表并会应用真值表解决问题
2.过程与方法通过复习旧知识引入新的知识,通过例题教学让学生理解逻辑联结词“或”、“且”的含义。。
3.情感、态度与价值观通过学生在学习过程中的感受、体验、认识,改变学生学习方式,提高学习质量。
教学重点 理解逻辑联结词“或”、“且”的含义
教学难点 1、正确理解命题“P∧q”“P∨q”真假的规定和判定.2、简洁、准确地表述命题“P∧q”“P∨q”.
教学方法 通过观察.类比.思考.交流和讨论等,理解命题的之间关系.
教学过程: 批 注
活动一:创设情景、引入课题 (5分钟)问题1:请同学们回顾上一节课学习过的内容:什么是充分不必要条件?什么是必要不充分条件?什么是充要条件?什么是不充分也不必要条件?问题2:思考、分析1、引入在当今社会中,人们从事任何工作、学 ( http: / / www.21cnjy.com )习,都离不开逻辑.具有一定逻辑知识是构成一个公民的文化素质的重要方面.数学的特点是逻辑性强,特别是进入高中以后,所学的数学比初中更强调逻辑性.如果不学习一定的逻辑知识,将会在我们学习的过程中不知不觉地经常犯逻辑性的错误.其实,同学们在初中已经开始接触一些简易逻辑的知识.在数学中,有时会使用一些联结词,如“且”“ ( http: / / www.21cnjy.com )或”“非”。在生活用语中,我们也使用这些联结词,但表达的含义和用法与数学中的含义和用法不尽相同。下面介绍数学中使用联结词“且”“或”“非”联结命题时的含义和用法。为叙述简便,今后常用小写字母p,q,r,s,…表示命题。(注意与上节学习命题的条件p与结论q的区别)2、思考、分析问题3::下列各组命题中,三个命题间有什么关系?(1)①12能被3整除;②12能被4整除;③12能被3整除且能被4整除。(2)①27是7的倍数;②27是9的倍数;③27是7的倍数或是9的倍数。学生很容易看到,在第(1) ( http: / / www.21cnjy.com )组命题中,命题③是由命题①②使用联结词“且”联结得到的新命题,在第(2)组命题中,命题③是由命题①②使用联结词“或”联结得到的新命题,。问题4:以前我们有没有学习过象这样用联结词“且”或“或”联结的命题呢?你能否举一些例子?例如:命题p:菱形的对角线相等且菱形的对角线互相平分。命题q:三条边对应成比例的两个三角形相似或两个角相等的两个三角形相似。点题:今天我们学习逻辑联结词“且、或”活动二:师生交流、进入新知,(20分钟)1、定义一般地,用联结词“且”把命题p和命题q联结起来,就得到一个新命题,记作p∧q读作“p且q”。一般地,用联结词“或”把命题p和命题q联结起来,就得到一个新命题,记作p∨q,读作“p或q”。命题“p∧q”与命题“p∨q”即,命题 ( http: / / www.21cnjy.com )“p且q”与命题“p或q”中的“且”字与“或” 字与下面两个命题中的“且” 字与“或” 字的含义相同吗?(1)若 x∈A且x∈B,则x∈A∩B。 (2)若 x∈A或x∈B,则x∈A∪B。定义中的“且”字与“或” 字与两个 ( http: / / www.21cnjy.com )命题中的“且” 字与“或” 字的含义是类似。但这里的逻辑联结词“且”与日常语言中的“和”,“并且”,“以及”,“既…又…”等相当,表明前后两者同时兼有,同时满足, 逻辑联结词“或”与生活中“或”的含义不同,例如“你去或我去”,理解上是排斥你我都去这种可能.说明:符号“∧”与“∩”开口都是向下,符号“∨”与“∪”开口都是向上。例1:将下列命题分别用“且”与“或” 联结成新命题“p∧q” 与“p∨q”的形式,并判断它们的真假。(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数.解:(1)p∧q:平行四边形的对角线互相平分且平行四边形的对角线相等.也可简写成平行四边形的对角线互相平分且相等.p∨q: 平行四边形的对角线互相平分或平行四边形的对角线相等. 也可简写成平行四边形的对角线互相平分或相等.由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.(2)p∧q:菱形的对角线互相垂直且菱形的对角线互相平分. 也可简写成菱形的对角线互相垂直且平分.p∨q: 菱形的对角线互相垂直或菱形的对角线互相平分. 也可简写成菱形的对角线互相垂直或平分.由于p是真命题,且q也是真命题,所以p∧q是真命题, p∨q也是真命题.(3)p∧q:35是15的倍数且35是7的倍数. 也可简写成35是15的倍数且是7的倍数.P∨q: 35是15的倍数或35是7的倍数. 也可简写成35是15的倍数或是7的倍数.由于p是假命题, q是真命题,所以p∧q是假命题, p∨q是真命题.说明,在用"且"或"或"联结新命题时,如果简写,应注意保持命题的意思不变.练习:P18:1问题5:你能确定命题“p∧q”与命题“p∨q”的真假吗?命题“p∧q”与命题“p∨q”的真假和命题p,q的真假之间有什么联系?引导学生分析前面所举例子中命题p,q以及命题p∧q的真假性,概括出这三个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,①②都是真命题,所以命题③是真命题。第(2)组命题中,①是假命题,②是真命题,但命题③是真命题。4、命题“p∧q”与命题“p∨q”的真假的规定pqp∨q真真真真假真假真真假假假pqp∧q真真真真假假假真假假假假(即一假则假) (即一真则真)一般地,我们规定: 当p,q都是真命题时,p∧q是真 ( http: / / www.21cnjy.com )命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题;当p,q两个命题中有一个是真命题时,p∨q是真命题;当p,q两个命题都是假命题时,p∨q是假命题。活动三:合作学习、探究新知(18分钟)例2:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。(1)1既是奇数,又是素数;(2)2和3都是素数;(3)2≤2.解(1)且命题: 1既是奇数且又是素数;因为“1是素数”是假命题,则这个命题为假命题。(2)且命题: 2是素数且3是素数; 因为“2是素数和3是素数”都是真命题,则这个命题为真命题。(3)命题“2≤2”是由命题p:2=2或 q:2<2构成,因为“p:2=2”都是真命题,则这个命题为真命题。练习:P18:2例3:说出下列命题是且命题还是或命题,判断下列命题的真假;(1)6是自然数且是偶数(2)是A的子集且是A的真子集;(3)集合A是A∩B的子集或是A∪B的子集;(4)周长相等的两个三角形全等或面积相等的两个三角形全等.补充练习:1、书本P16页思考 2、:分别指出下列复合命题的形式及构成它们的简单命题:⑴ 24既是8的倍数,也是6的被数; (3)10可以被2或5整除⑵ 李强是篮球运动员或跳高运动员; (4)菱形的对角线互相平分且垂直3:命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是( )A:使用了逻辑联结词“或” B:使用了逻辑联结词“且”C:使用了逻辑联结词“非” D:没有使用逻辑联结词活动四:归纳整理、提高认识(2分钟)1、什么是且命题?什么是或命题?如果判断一个“且命题”、“或命题”的真假性?活动五:作业布置、提高巩固1.书面作业:书本P18:A组1;2 B组:1、2、3、3板书设计: 简单逻辑联结词——且与或且命题与或命题 例1: 例2:且命题与或命题的真假性判断
教学后记: