上海市浦东新区2015-2016学年高二上学期期末质量抽测数学试题

文档属性

名称 上海市浦东新区2015-2016学年高二上学期期末质量抽测数学试题
格式 zip
文件大小 139.3KB
资源类型 教案
版本资源 沪教版
科目 数学
更新时间 2016-03-31 08:02:28

图片预览

文档简介

浦东新区2015学年第一学期期末质量抽测
高二数学试卷
第Ⅰ卷
一、填空题:
1、1和9的等差中项为
2、线性方程组的增广矩阵为,则线性方程组的解是
3、行列式 ( http: / / www.21cnjy.com )中元素8的代数余子式的值为
4、若向量,则向量的单位向量
5、等差数列中,,则
6、已知向量,且,则的值为
7、椅子,若实数满足,则的值是
8、一个算法的程序框图如图所示,则该算法运行后输出的结果为
9、关于的方程 ( http: / / www.21cnjy.com )的解为
10、若无穷等比数列的各项和为3,则首项的取值范围为
11、已知正方形ABCD的边长为1,M是正方形ABCD四边上或内部
的动点,则的取值范围是
12、定义为向量到向量的一个矩阵变换,设向量为坐标原点,则
二,选择题:
13、用数学归纳法证明:,在验证时,等式左边为
A.1 B. C. D.
14、下列命题正确的是
A.若,则且
B.若,则且
C.若无穷数列有极限,且它的前n项和为,则
D.若无穷数列有极限,则
15、如图,是平面上的任意四点,下列式子中正确的是
A. B.
C. D.
16、设为等差数列的前n项和,若已知,则下列叙述中正确的个数有
①是所有中的最大值;②是所有中的最大值;
③公差一定小于0 ④一定小于
A.1个 B.2个 C.3个 D.4个
三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤
17、(本小题满分8分)
已知关于的方程组。
(1)求;
(2)当实数为何值时方程组无解;
(3)当实数为何值时,方程组有解,并求出方程的解。
18、(本小题满分12分)
已知等比数列的首项为1,公比为,它的前n项和为,且,求的值。
19、(本小题满分12分)
已知向量(其中为坐标原点),点P是直线OC上的一个动点。
(1)若,求的坐标;
(2)当取最小值时,求的值。
20、(本小题满分12分)
已知无穷等比数列中,首项,公比,
数列满足。
(1)求数列的通项公式;
(2)求数列的前n项和的最大值。
21、(本小题满分14分)
设数列的前n项和为,已知为常数)。
(1)求的值;
(2)求数列的通项公式;
(3)记集合,若中仅有3个元素,求实数的取值范围。
浦东新区2015学年度第一学期期末质量抽测
高二数学答案(2016年1月)
一、填空题(每题3分,满分36分)
1.5; 2.; 3.; 4.(,); 5.6; 6.; 7.;
8.; 9.; 10.; 11.; 12..
二、选择题(每题3分,共12分)
13.C; 14.D; 15.B; 16.C.
三、解答题(满分52分)
17.(本题满分8分)
解:(1) (3分)
(2)当,方程组无解 (5分)
(3)当方程组有唯一解 ( http: / / www.21cnjy.com ) (8分)
18. (本题满分8分)
解:(1)当 . (3分)
(2)当 (5分)
(7分)
综上得 (8分)
19.(本题满分10分)
解:(1)设,则 (2分)
(4分)
(5分)
(7分)
,此时 (9分)
(10分)
20.(本题满分12分)
解:(1) ,, (3分)
; (6分)
设数列的前n项之和为,则, (10分)
当时,取得最大值. (12分)
21.(本题满分14分)
解:(1)由题意,得, (2分)
即 ,解得 . (4分)
(2)由(1)知, ①
当时, ②
①-②,得(),又, (7分)
所以数列是首项为,公比为的等比数列. (8分)
所以的通项公式为(). (9分)
(3)由,得, (10分)
得 ( http: / / www.21cnjy.com ),令,
因为,所以为递增数列, (12分)
且,所以即可,(13分)
即 . (14分)
同课章节目录