2025二轮复习小题满分练(四)
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2024·湖北武汉·模拟预测)复数满足,则( )
A. B.2 C. D.
2.(2024·重庆·三模)已知集合,集合,若,则( )
A. B.0 C.1 D.2
3.(2022·全国·高考真题)函数在区间的图象大致为( )
A. B.
C. D.
4.(2023·广东茂名·一模)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m;上半部分近似一个与下半部分同底的圆锥,其母线长为m,轴截面(过圆锥旋转轴的截面)是面积为的等腰钝角三角形,则该蒙古包的体积约为( )
A. B. C. D.
5.(2024·贵州贵阳·一模)向量在向量上的投影向量为( )
A. B. C. D.
6.(2024·北京东城·一模)设等差数列的公差为,则“”是“为递增数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.(2024·广东广州·模拟预测)下列命题为真命题的是( )
A.若,则 B.若,,则
C.若,则 D.若,则
8.(2023·浙江温州·二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程 高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊 平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体棱长为,则模型中九个球的表面积和为( )
A. B. C. D.
二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)
9.(2024·江苏南通·二模)已知双曲线的右焦点为F,直线是C的一条渐近线,P是l上一点,则( )
A.C的虚轴长为 B.C的离心率为
C.的最小值为2 D.直线PF的斜率不等于
10.(21-22高二下·福建泉州·期中)的展开式中,下列说法正确的是( )
A.所有项系数和为64 B.常数项为第4项
C.整式共有3项 D.项的系数
11.(2024·全国·模拟预测)已知函数及其导函数的定义域均为,若是奇函数,,且对任意x,,,则( )
A. B.
C. D.
三、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中的横线上)
12.(23-24高三上·浙江宁波·期末)在中,角的对边分别为,已知.则角 .
13.(2023·江苏·三模)已知F1,F2,分别为双曲线C:(a>0,b>0)的左、右焦点,过F2作C的两条渐近线的平行线,与渐近线交于M,N两点.若,则C的离心率为 .
14.(23-24高三下·重庆·开学考试)已知定义在上的偶函数满足,且当时,.若,则在点处的切线方程为 .(结果用含的表达式表示)2025二轮复习小题满分练(四)
一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(2024·湖北武汉·模拟预测)复数满足,则( )
A. B.2 C. D.
2.(2024·重庆·三模)已知集合,集合,若,则( )
A. B.0 C.1 D.2
3.(2022·全国·高考真题)函数在区间的图象大致为( )
A. B.
C. D.
4.(2023·广东茂名·一模)蒙古包是蒙古族牧民居住的一种房子,建造和搬迁都很方便,适于牧业生产和游牧生活,蒙古包下半部分近似一个圆柱,高为2m;上半部分近似一个与下半部分同底的圆锥,其母线长为m,轴截面(过圆锥旋转轴的截面)是面积为的等腰钝角三角形,则该蒙古包的体积约为( )
A. B. C. D.
5.(2024·贵州贵阳·一模)向量在向量上的投影向量为( )
A. B. C. D.
6.(2024·北京东城·一模)设等差数列的公差为,则“”是“为递增数列”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
7.(2024·广东广州·模拟预测)下列命题为真命题的是( )
A.若,则 B.若,,则
C.若,则 D.若,则
8.(2023·浙江温州·二模)如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程 高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊 平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体棱长为,则模型中九个球的表面积和为( )
A. B. C. D.
二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)
9.(2024·江苏南通·二模)已知双曲线的右焦点为F,直线是C的一条渐近线,P是l上一点,则( )
A.C的虚轴长为 B.C的离心率为
C.的最小值为2 D.直线PF的斜率不等于
10.(21-22高二下·福建泉州·期中)的展开式中,下列说法正确的是( )
A.所有项系数和为64 B.常数项为第4项
C.整式共有3项 D.项的系数
11.(2024·全国·模拟预测)已知函数及其导函数的定义域均为,若是奇函数,,且对任意x,,,则( )
A. B.
C. D.
三、填空题(本大题共3小题,每小题5分,共15分,把答案填在题中的横线上)
12.(23-24高三上·浙江宁波·期末)在中,角的对边分别为,已知.则角 .
13.(2023·江苏·三模)已知F1,F2,分别为双曲线C:(a>0,b>0)的左、右焦点,过F2作C的两条渐近线的平行线,与渐近线交于M,N两点.若,则C的离心率为 .
14.(23-24高三下·重庆·开学考试)已知定义在上的偶函数满足,且当时,.若,则在点处的切线方程为 .(结果用含的表达式表示)
参考答案:
题号 1 2 3 4 5 6 7 8 9 10
答案 C B A C C A B B AD AC
题号 11
答案 BD
1.C
【分析】首先待定结合复数相等求得,结合模长公式即可求解.
【详解】由题意不妨设,所以,
所以,解得,所以.
故选:C.
2.B
【分析】利用子集的概念求解.
【详解】集合,集合,
若,又,所以,解得
故选:B
3.A
【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.
【详解】令,
则,
所以为奇函数,排除BD;
又当时,,所以,排除C.
故选:A.
4.C
【分析】根据题意求圆锥的高和底面半径,再结合锥体、柱体体积运算求解.
【详解】如图所示为该圆锥轴截面,设顶角为,
因为其轴截面(过圆锥旋转轴的截面)是腰长为,面积为的等腰三角形,
所以,解得,则或(舍去),
由得,,
则上半部分的体积为,下半部分体积为,
故蒙古包的体积为.
故选:C.
5.C
【分析】代入投影向量公式,即可求解.
【详解】向量在向量上的投影向量为.
故选:C
6.A
【分析】利用等差数列通项公式求出,再利用单调数列的定义,结合充分条件、必要条件的意义判断即得.
【详解】由等差数列的公差为,得,则,
当时,,而,则,因此,为递增数列;
当为递增数列时,则,即有,整理得,不能推出,
所以“”是“为递增数列”的充分不必要条件.
故选:A
7.B
【分析】由不等式的基本性质,赋值法逐项判断即可.
【详解】对于A,可以取,,,此时,所以A错误.
对于B:∵,∴,因为,所以,故B正确;
对于C:取,时,则,,,则,故C错误;
对于D:当,时,,,则,故D错误;
故选:B.
8.B
【分析】作出辅助线,先求出正四面体的内切球半径,再利用三个球的半径之间的关系得到另外两个球的半径,得到答案.
【详解】如图,取的中点,连接,,则,,
过点作⊥底面,垂足在上,且,
所以,故,
点为最大球的球心,连接并延长,交于点,则⊥,
设最大球的半径为,则,
因为∽,所以,即,解得,
即,则,故
设最小球的球心为,中间球的球心为,则两球均与直线相切,设切点分别为,
连接,则分别为最小球和中间球的半径,长度分别设为,
则,则,
又,所以,解得,
又,故,解得,
所以,
模型中九个球的表面积和为.
故选:B
【点睛】解决与球有关的内切或外接的问题时,解题的关键是确定球心的位置.对于外切的问题要注意球心到各个面的距离相等且都为球半径;对于球的内接几何体的问题,注意球心到各个顶点的距离相等,解题时要构造出由球心到截面圆的垂线段、小圆的半径和球半径组成的直角三角形,利用勾股定理求得球的半径
9.AD
【分析】根据给定条件,求出双曲线的渐近线方程,求出,再逐项判断即得.
【详解】双曲线的渐近线方程为,依题意,,解得,
对于A,的虚轴长,A正确;
对于B,的离心率,B错误;
对于C,点到直线的距离,即的最小值为,C错误;
对于D,直线的斜率为,而点不在上,点在上,则直线PF的斜率不等于,D正确.
故选:AD
10.AC
【分析】根据赋值法可求出所有项系数和判断A,由二项展开式的通项公式可判断BCD即可.
【详解】令,由知,所有项系数和为64,故A正确;
二项展开式的通项公式为,令,解得,故展开式第5项为常数项,故B错误;
当时,,展开式为整式,故C正确;
当时,,,故D错误.
故选:AC
11.BD
【分析】根据赋值法,结合原函数与导函数的对称性,奇、偶函数的定义、函数周期性进行求解即可.
【详解】令,得,因为,
所以,所以A错误;
令,得①,所以,
因为是奇函数,所以是偶函数,
所以②,由①②,
得,
即,
所以,
所以,是周期为3的函数,所以,
,
所以B正确,C错误;
因为,
在①中令得,
所以,
,所以D正确.
故选:BD.
【点睛】对于可导函数有:
奇函数的导数为偶函数
偶函数的导数为奇函数
若定义在R上的函数是可导函数,且周期为T,则其导函数是周期函数,且周期也为T
12.
【分析】利用正弦定理及二倍角公式化简计算即可.
【详解】由正弦定理及二倍角公式得:
,
因为在中,,
,
即,
即,
因为在中,,
所以,所以.
故答案为:.
13.
【分析】根据二倍角公式求出,再求出离心率即可.
【详解】易知MN关于x轴对称,令,,
∴,,∴,∴.
,,,
∴,
∴.
故答案为: .
14.
【分析】利用赋值法分别令,可得,,根据为偶函数得,由,令、可得,为偶函数求出,再由直线的点斜式方程可得答案.
【详解】因为,所以,即,
令,有,令,有,所以,
,因为为偶函数,所以,
由,令得,所以,
令得,所以,
因为为偶函数,所以,
所以在点处的切线方程为,
即.
故答案为:.
【点睛】关键点点睛:解题的关键点是利用赋值法、为偶函数求出、,再由直线点斜式方程求解.
试卷第2页,共2页
试卷第1页,共1页