2025二轮复习大题规范练(四)(含解析)

文档属性

名称 2025二轮复习大题规范练(四)(含解析)
格式 zip
文件大小 2.0MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-12-10 14:38:04

文档简介

2025二轮复习大题规范练(四)
一、基础保分练
1.(2023·广东广州·二模)设是数列的前n项和,已知,.
(1)求,;
(2)令,求.
2.(2024·福建厦门·一模)已知的内角A,B,C的对边分别为a,b,c,且.
(1)求;
(2)若,且的周长为,求的面积.
3.(23-24高二上·江苏扬州·期末)已知函数在处取得极小值5.
(1)求实数a,b的值;
(2)当时,求函数的最小值.
4.(2024·浙江·模拟预测)如图,已知正三棱柱分别为棱的中点.

(1)求证:平面;
(2)求二面角的正弦值.
5.(2024·全国·三模)甲、乙两人进行乒乓球比赛,比赛规则:每一局比赛中,胜者得1分,负者得0分,且比赛中没有平局.根据以往战绩,每局比赛甲获胜的概率为,每局比赛的结果互不影响.
(1)经过3局比赛,记甲的得分为X,求X的分布列和期望;
(2)若比赛采取3局制,试计算3局比赛后,甲的累计得分高于乙的累计得分的概率.
6.(2024·河南开封·二模)已知椭圆的左,右焦点分别为,,上顶点为,且.
(1)求的离心率;
(2)射线与交于点,且,求的周长.
二、能力增分练
7.(23-24高三上·山东枣庄·期末)在中,角所对的边分别为.若.
(1)求;
(2)若为锐角三角形,求的取值范围.
8.(2024·全国·模拟预测)已知数列的前项和为,且.
(1)求数列的通项公式;
(2)若存在,使得成立,求实数的取值范围.
9.(2024·黑龙江哈尔滨·一模)已知函数.
(1)当时,求在处的切线方程;
(2)当时,求的单调区间和极值;
(3)若对任意,有恒成立,求的取值范围.
10.(2023·吉林·二模)一个池塘里的鱼的数目记为N,从池塘里捞出200尾鱼,并给鱼作上标识,然后把鱼放回池塘里,过一小段时间后再从池塘里捞出500尾鱼,表示捞出的500尾鱼中有标识的鱼的数目.
(1)若,求的数学期望;
(2)已知捞出的500尾鱼中15尾有标识,试给出N的估计值(以使得最大的N的值作为N的估计值).
11.(2024·河南·模拟预测)如图,平行六面体中,底面是边长为2的正方形,为与的交点,.
(1)证明:平面;
(2)求二面角的正弦值.
12.(2023·四川巴中·模拟预测)设抛物线的焦点为F,点在抛物线C上,(其中O为坐标原点)的面积为4.
(1)求a;
(2)若直线l与抛物线C交于异于点P的A,B两点,且直线PA,PB的斜率之和为,证明:直线l过定点,并求出此定点坐标.
三、拓展培优练
13.(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.
(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X,求X的分布列和数学期望;
(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件“甲工厂提高了生产该零件的质量指标”,事件“该大型企业把零件交给甲工厂生产”、已知,证明: .
14.(23-24高三下·安徽·开学考试)基本不等式可以推广到一般的情形:对于个正数,它们的算术平均不小于它们的几何平均,即,当且仅当时,等号成立.若无穷正项数列同时满足下列两个性质:①;②为单调数列,则称数列具有性质.
(1)若,求数列的最小项;
(2)若,记,判断数列是否具有性质,并说明理由;
(3)若,求证:数列具有性质.
15.(2024·河南·模拟预测)记的内角,,的对边分别为,,,且.
(1)证明:;
(2)若,求当面积最大时的值.
16.(2023·湖北·二模)如图,在三棱柱中,,,E,F分别为,的中点,且EF⊥平面.
(1)求棱BC的长度;
(2)若,且的面积,求二面角的正弦值.
17.(2022·湖北武汉·一模)椭圆的离心率为,右顶点为A,设点O为坐标原点,点B为椭圆E上异于左、右顶点的动点,面积的最大值为.
(1)求椭圆E的标准方程;
(2)设直线交x轴于点P,其中,直线PB交椭圆E于另一点C,直线BA和CA分别交直线l于点M和N,若O、A、M、N四点共圆,求t的值.
18.(2023·湖北·模拟预测)已知函数.
(1)求函数在处的切线方程;
(2)若不等式恒成立,求实数的取值范围.
参考答案:
1.(1)
(2)
【分析】(1)根据递推关系即可联立求解,
(2)根据偶数项和奇数项的关系可得,进而根据分组求和即可.
【详解】(1)由得即
,即,又,所以,
(2)当时,,
当时,,
两式相加可得,得,
由于,所以
2.(1);
(2).
【分析】
(1)应用正弦边角关系及和角正弦公式有,再由三角形内角性质即可求边长;
(2)应用余弦定理及已知得且,进而求得,最后应用面积公式求面积.
【详解】(1)由题设,由正弦定理有,
所以,而,故,又,
所以.
(2)由(1)及已知,有,可得,
又,即,
所以,故.
3.(1),
(2)
【分析】(1)由题意得到,,求出,,检验后得到答案;
(2)求导,得到函数单调性,进而得到极值和最值情况,得到答案.
【详解】(1),
因为在处取极小值5,所以,得,
此时
所以在上单调递减,在上单调递增
所以在时取极小值,符合题意
所以,.
又,所以.
(2),所以
列表如下:
0 1 2 3
0 0
1 ↗ 极大值6 ↘ 极小值5 ↗ 10
由于,故时,.
4.(1)证明见解析
(2)
【分析】利用线面垂直判定定理来证明;用向量法计算两平面夹角的余弦值,再求夹角的正弦值;
【详解】(1)取中点,由正三棱柱性质得,互相垂直,以为原点,分别以,所在直线为轴,轴,轴建立如图所示的空间直角坐标系.
不妨设,则,
则.
证明:,
由,得,
由,得,
因为平面,所以平面.
(2)

由(1)可知为平面的一个法向量,设平面的法向量,
则,故,
令,得面的一个法向量为,
设二面角的值为,
则,所以,二面角的正弦值为.
5.(1)分布列见解析,2
(2)
【分析】(1)根据题意可知,进而利用二项分布求出的分布列及数学期望;
(2)由题意可知,甲的累计得分高于乙的累计得分有两种情况,即甲获胜2局,甲获胜3局,从而结合(1)可得结果.
【详解】(1)由题意得,,X的取值可能为0,1,2,3,
则,,
,.
所以X的分布列为
X 0 1 2 3
P
因为,所以X的期望.
(2)第3局比赛后,甲的累计得分高于乙的累计得分有两种情况:
甲获胜2局,甲获胜3局,
所以所求概率为.
6.(1)
(2)
【分析】(1)由,可得,的关系,进而求出椭圆的离心率;
(2)由(1)可得与,与的关系,设直线的方程,与椭圆的方程联立,可得点的坐标,求出的表达式,由题意可得,的值,由椭圆的性质可得的周长为,即求出三角形的周长.
【详解】(1)依题意可得上顶点,左,右焦点分别为,,
所以,,
又,
所以,即,即,
所以,所以离心率;
(2)由(1)可得,,则椭圆方程为,
射线的方程为,
联立,整理可得,
解得或,则,即,
所以,解得,则,
所以的周长.

7.(1);
(2).
【分析】(1)利用边化角及三角恒等变换公式整理计算即可;
(2)通过角的转化,借助三角恒等变换公式,得到,利用
的范围,即可求出结果.
【详解】(1)因为,整理得

所以,
由正弦定理得:,
因为,所以,所以.
(2)因为为锐角三角形,,所以,且,
所以,
解法

因为,所以,
所以,
即的取值范围是.
解法

因为,所以,得,
所以,
即的取值范围是.
8.(1);
(2).
【分析】(1)当时,求得,当时,得到,两式相减化简得到,结合叠加法,即可求得数列的通项公式;
(2)由(1)得到,求得,
解法1:根据题意,转化为,结合,结合基本不等式,即可求解;
解法2:根据题意,转化为,结合二次函数的性质,即可求解.
【详解】(1)解:当时,,解得,
当时,,
两式相减可得,,
则,
叠加可得,,则,
而时也符合题意,
所以数列的通项公式为.
(2)解:由(1)知,可得,
故;
解法1:由,可得,
即,即则,又由,
当且仅当时取等号,故实数的取值范围为.
解法2:由,
可得,
当,即时,,
则,故实数的取值范围为.
9.(1)
(2)的单调递减区间为:;递增区间为:,
的极大值为,无极小值
(3)
【分析】(1)利用已知确定切点,导数的几何意义确定斜率,求出切线方程即可.
(2)利用导数先求解单调性,再确定极值即可.
(3)利用分离参数法结合导数求解参数范围即可.
【详解】(1)当时,,
则,,,
所以切线方程为.
(2)当时,,.
令,,
故在R上单调递减,而,因此0是在R上的唯一零点
即:0是在R上的唯一零点
当x变化时,,的变化情况如下表:
x 0
0
极大值
的单调递减区间为:;递增区间为:
的极大值为,无极小值
(3)由题意知,即,即,
设,则,
令,解得,
当,,单调递增,
当,,单调递减,
所以,
所以
10.(1)20
(2)6666
【分析】(1)首先求出标鱼占总体的比例,再分析其符合超几何分布,根据超几何分布期望的计算公式即可得到答案.
(2)首先计算出当时,,当时,,
记,计算,从而得到的单调性,最后得到其最大值.
【详解】(1)依题意X服从超几何分布,且,
故.
(2)当时,,
当时,,
记,则

由,
当且仅当,
则可知当时,;
当时,,
故时,最大,所以N的估计值为6666.
11.(1)证明见解析;
(2)
【分析】(1)根据题意,利用线面垂直的判定定理证明即可.
(2)建立空间直角坐标系,利用向量法求二面角的正弦值.
【详解】(1)
连接,
因为底面是边长为2的正方形,所以,
又因为,,
所以,所以,
点为线段中点,所以,
在中,,,
所以,
则,
又,平面,平面,
所以平面.
(2)【方法一】:由题知正方形中,平面,所以建系如图所示,
则,
则,

设面的法向量为,面的法向量为,
则,取,则
取,则.
设二面角大小为,
则,
所以二面角的正弦值为.
【方法二】:以O为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系.
由题设得,,,,
,,
,,.
设是平面的法向量,
则,即,可取.
设是平面的法向量,
则,即,可取.
所以.
因此二面角的正弦值为.
12.(1);
(2)证明见解析,定点.
【分析】(1)利用题给条件列出关于a的方程,解之即可求得a的值;
(2)先设出直线l的方程,并与抛物线方程联立,利用设而不求的方法求得的关系,进而求得直线l过定点的坐标.
【详解】(1)因为点在抛物线C上,所以,即,
因为的面积为4,所以,解得,所以.
(2)由(1)得,.
当直线l斜率为0时,不适合题意;
当直线l斜率不为0时,设直线,设,,
由,得,
则,,,
因为直线PA,PB的斜率之和为,
所以,即,
所以,所以
,整理得,
所以直线,
令,解之得,所以直线l过定点.
13.(1)答案见解析
(2)证明见解析.
【分析】(1)设出甲乙两厂的零件数,表示事件发生的概率,由题意知X服从二项分布,写出分布列和期望即可.
(2)因为在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,即,化简变形即可证得.
【详解】(1)设甲工厂试生产的这批零件有m件,乙工厂试生产的这批零件有n件,
事件“混合放在一起零件来自甲工厂”,事件“混合放在一起零件来自乙工厂”,事件“混合放在一起的某一零件是合格品”,
则,,

计算得.
所以.
X的可能取值为0,1,2,3,,

,,
,.
所以,X的分布列为:
X 0 1 2 3
P
(2)因为在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,
所以.
即.
因为,,
所以.
因为,,
所以.
即得,
所以.
即.
又因为,,
所以.
因为,,
所以.
即得证.
14.(1)最小项为
(2)数列具有性质,理由见解析.
(3)证明见解析
【分析】(1)利用,结合三个数的算术平均不小于它们的几何平均求解;
(2)变形,再利用等比数列求和证明性质①,利用证明②;
(3)结合二项式定理及n元基本不等式求解.
【详解】(1),当且仅当,即时,等号成立,
数列的最小项为.
(2)数列具有性质.


数列满足条件①.
为单调递增数列,数列满足条件②.
综上,数列具有性质.
(3)先证数列满足条件①:

当时,
则,
数列满足条件①.
再证数列满足条件②:
(,等号取不到)
为单调递增数列,数列满足条件②.
综上,数列具有性质.
【点睛】关键点点睛:本题考查等比数列求和及二项式定理,证明性质①均需要放缩为可求和数列.
15.(1)证明见解析
(2)
【分析】(1)根据可得,再结合商数关系及二倍角的余弦公式化简即可得出结论;
(2)由(1)可得,根据正弦定理化角为边可得,再由,结合正弦定理化角为边求出,再根据三角形的面积公式,结合导数即可得出答案.
【详解】(1)由已知得,
∴,
又,且,∴;
(2)由(1)可得,
由正弦定理可得,
∴,.
∵,∴,
∴,∴,∴,
又,
∴,
∴,
令,则,则,
设,,
则,
令,得,即,
当时,,当时,,
所以函数在上单调递增,在上单调递减,
则当时,取得最大值,此时最大,
则.
【点睛】方法点睛:在解三角形的问题中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则如下:
(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;
(2)若式子中含有、、的齐次式,优先考虑正弦定理“边化角”;
(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;
(4)代数式变形或者三角恒等变换前置;
(5)含有面积公式的问题,要考虑结合余弦定理求解;
(6)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.
16.(1)1
(2)
【分析】(1)根据平行关系可得,再结合垂直关系可得,即可得结果;
(2)根据题意分析可得平面ABC,,建系,利用空间向量求二面角.
【详解】(1)取AC中点D,连接ED,BD,
∵分别为的中点,则且,
又∵为三棱柱,且分别为的中点,则且,
可得且,即四边形DEFB为平行四边形,故,
又∵平面,则平面,
平面,可得,
又∵D为AC的中点,则△ABC为等腰三角形,
∴.
(2)由(1)可知:,且,即,
∴,
则可得,且,
∵平面,平面,则,
∴,解得,
由(1)知平面,平面,则,
又∵,则
又∵,,则,
,平面ABC,
∴平面ABC,
平面ABC,则,
且,可得,
∴为直角三角形,则,
以为坐标原点,向量,,方向为x轴,y轴,z轴正方向建立空间直角坐标系,
则,,,,,,
可得,,
设平面的一个法向量为,则,
令,则,可得,
∵平面的一个法向量为,
设二面角的平面角为,
可得,
∴,
故二面角的正弦值为.
17.(1)
(2)6
【分析】(1)由离心率为可得,又面积的最大值为,联立方程求解即可得答案;
(2)设直线BC方程为,与椭圆方程联立,由韦达定理可得,又,,当O、A、M、N四点共圆,由相交弦定理可得,即,根据韦达定理化简可得,从而即可求解.
【详解】(1)解:由题意,设椭圆半焦距为c,则,即,得,
设,由,所以的最大值为,
将代入,有,解得,
所以椭圆的标准方程为;
(2)解:设,因为点B为椭圆E上异于左、右顶点的动点,则直线BC不与x轴重合,
设直线BC方程为,与椭圆方程联立得,
,可得,
由韦达定理可得,
直线BA的方程为,令得点M纵坐标,
同理可得点N纵坐标,
当O、A、M、N四点共圆,由相交弦定理可得,即,

由,故,解得.
18.(1)
(2)
【分析】(1)根据导数的几何意义知函数在处的导数值即为切线斜率,所以对函数求导可得切线斜率,进而得切线方程;
(2)根据题意属于不等式恒成立求参数取值范围问题,可以把不等式分离参数,然后构造新函数,转化为利用导数求新函数的最值问题;也可以利用切线不等式得到即,再对分和讨论即得的取值范围.
【详解】(1),,

的图像在处的切线方程为,即.
(2)解法一:由题意得,因为函数,
故有,等价转化为,
即在时恒成立,所以,
令,则,
令,则,所以函数在时单调递增,
,,
,使得,
当时,,即单调递减,当时,,即单调递增,
故,
由,得
在中,,当时,,
函数在上单调递增,,即与,

,即实数的取值范围为.
解法二:因为函数,
故有,等价转化为:,
构造,
,所以可知在上单调递减,在上单调递增,
,即成立,令,
令, 在单调递增,
又,所以存在,使得,即,
可知,
当时,可知恒成立,即此时不等式成立;
当时,又因为,
所以,与不等式矛盾;
综上所述,实数的取值范围为.
【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:
1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;
2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.
3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2025二轮复习大题规范练(四)
一、基础保分练
1.(2023·广东广州·二模)设是数列的前n项和,已知,.
(1)求,;
(2)令,求.
2.(2024·福建厦门·一模)已知的内角A,B,C的对边分别为a,b,c,且.
(1)求;
(2)若,且的周长为,求的面积.
3.(23-24高二上·江苏扬州·期末)已知函数在处取得极小值5.
(1)求实数a,b的值;
(2)当时,求函数的最小值.
4.(2024·浙江·模拟预测)如图,已知正三棱柱分别为棱的中点.

(1)求证:平面;
(2)求二面角的正弦值.
5.(2024·全国·三模)甲、乙两人进行乒乓球比赛,比赛规则:每一局比赛中,胜者得1分,负者得0分,且比赛中没有平局.根据以往战绩,每局比赛甲获胜的概率为,每局比赛的结果互不影响.
(1)经过3局比赛,记甲的得分为X,求X的分布列和期望;
(2)若比赛采取3局制,试计算3局比赛后,甲的累计得分高于乙的累计得分的概率.
6.(2024·河南开封·二模)已知椭圆的左,右焦点分别为,,上顶点为,且.
(1)求的离心率;
(2)射线与交于点,且,求的周长.
二、能力增分练
7.(23-24高三上·山东枣庄·期末)在中,角所对的边分别为.若.
(1)求;
(2)若为锐角三角形,求的取值范围.
8.(2024·全国·模拟预测)已知数列的前项和为,且.
(1)求数列的通项公式;
(2)若存在,使得成立,求实数的取值范围.
9.(2024·黑龙江哈尔滨·一模)已知函数.
(1)当时,求在处的切线方程;
(2)当时,求的单调区间和极值;
(3)若对任意,有恒成立,求的取值范围.
10.(2023·吉林·二模)一个池塘里的鱼的数目记为N,从池塘里捞出200尾鱼,并给鱼作上标识,然后把鱼放回池塘里,过一小段时间后再从池塘里捞出500尾鱼,表示捞出的500尾鱼中有标识的鱼的数目.
(1)若,求的数学期望;
(2)已知捞出的500尾鱼中15尾有标识,试给出N的估计值(以使得最大的N的值作为N的估计值).
11.(2024·河南·模拟预测)如图,平行六面体中,底面是边长为2的正方形,为与的交点,.
(1)证明:平面;
(2)求二面角的正弦值.
12.(2023·四川巴中·模拟预测)设抛物线的焦点为F,点在抛物线C上,(其中O为坐标原点)的面积为4.
(1)求a;
(2)若直线l与抛物线C交于异于点P的A,B两点,且直线PA,PB的斜率之和为,证明:直线l过定点,并求出此定点坐标.
三、拓展培优练
13.(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.
(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X,求X的分布列和数学期望;
(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件“甲工厂提高了生产该零件的质量指标”,事件“该大型企业把零件交给甲工厂生产”、已知,证明: .
14.(23-24高三下·安徽·开学考试)基本不等式可以推广到一般的情形:对于个正数,它们的算术平均不小于它们的几何平均,即,当且仅当时,等号成立.若无穷正项数列同时满足下列两个性质:①;②为单调数列,则称数列具有性质.
(1)若,求数列的最小项;
(2)若,记,判断数列是否具有性质,并说明理由;
(3)若,求证:数列具有性质.
15.(2024·河南·模拟预测)记的内角,,的对边分别为,,,且.
(1)证明:;
(2)若,求当面积最大时的值.
16.(2023·湖北·二模)如图,在三棱柱中,,,E,F分别为,的中点,且EF⊥平面.
(1)求棱BC的长度;
(2)若,且的面积,求二面角的正弦值.
17.(2022·湖北武汉·一模)椭圆的离心率为,右顶点为A,设点O为坐标原点,点B为椭圆E上异于左、右顶点的动点,面积的最大值为.
(1)求椭圆E的标准方程;
(2)设直线交x轴于点P,其中,直线PB交椭圆E于另一点C,直线BA和CA分别交直线l于点M和N,若O、A、M、N四点共圆,求t的值.
18.(2023·湖北·模拟预测)已知函数.
(1)求函数在处的切线方程;
(2)若不等式恒成立,求实数的取值范围.
同课章节目录