2025二轮复习大题规范练(五)(含解析)

文档属性

名称 2025二轮复习大题规范练(五)(含解析)
格式 zip
文件大小 2.1MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2024-12-10 14:41:20

文档简介

2025二轮复习大题规范练(五)
一、基础保分练
1.(2024·黑龙江哈尔滨·一模)在中,角所对的边分别为,已知,角的平分线交边于点,且.
(1)求角的大小;
(2)若,求的面积.
2.(2024·黑龙江吉林·二模)已知是数列的前项和,,是公差为1的等差数列.
(1)求数列的通项公式;
(2)证明:.
3.(23-24高二上·陕西汉中·期末)某校举行围棋友谊赛,甲、乙两名同学进行冠亚军决赛,每局比赛甲获胜的概率是,乙获胜的概率是,规定:每一局比赛中胜方记1分,负方记0分,先得3分者获胜,比赛结束.
(1)求进行3局比赛决出冠亚军的概率;
(2)若甲以领先乙时,记表示比赛结束时还需要进行的局数,求的分布列及数学期望.
4.(23-24高三下·浙江·开学考试)如图,四棱锥中,平面平面为等边三角形,,是棱的中点.

(1)证明:;
(2)求平面与平面所成角的余弦值.
5.(2024·全国·模拟预测)已知F是抛物线E:的焦点,是抛物线E上一点,与点F不重合,点F关于点M的对称点为P,且.
(1)求抛物线E的标准方程;
(2)若过点的直线与抛物线E交于A,B两点,求的最大值.
6.(23-24高二上·浙江宁波·期末)已知函数.
(1)当时,求函数的单调区间;
(2)当时,求函数的最大值.
二、能力增分练
7.(2024·福建·模拟预测)已知各项均为正数的数列满足,且.
(1)写出,,并求的通项公式;
(2)记求.
8.(2023·福建福州·二模)记的内角,,的对边分别为,,.已知.
(1)求的值:
(2)求的最大值.
9.(2023·湖北武汉·一模)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.
(1)记总的抽取次数为X,求E(X);
(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.
10.(2023·四川雅安·一模)如图,在三棱柱中,直线平面,平面平面.

(1)求证:;
(2)若,在棱上是否存在一点,使二面角的余弦值为?若存在,求的值;若不存在,请说明理由.
11.(2024·浙江杭州·二模)已知是椭圆的左,右顶点,点与椭圆上的点的距离的最小值为1.
(1)求点的坐标.
(2)过点作直线交椭圆于两点(与不重合),连接,交于点.
(ⅰ)证明:点在定直线上;
(ⅱ)是否存在点使得,若存在,求出直线的斜率;若不存在,请说明理由.
12.(23-24高二下·全国·课前预习)已知函数.
(1)若,求曲线在点处的切线;
(2)讨论的单调性;
三、拓展培优练
13.(2023·北京东城·一模)已知数表中的项互不相同,且满足下列条件:
①;
②.
则称这样的数表具有性质.
(1)若数表具有性质,且,写出所有满足条件的数表,并求出的值;
(2)对于具有性质的数表,当取最大值时,求证:存在正整数,使得;
(3)对于具有性质的数表,当n为偶数时,求的最大值.
14.(22-23高一下·四川·期末)蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D为边BC上靠近B点的三等分点,,.

(1)若,求三角形手巾的面积;
(2)当取最小值时,请帮设计师计算BD的长.
15.(23-24高三上·浙江温州·期末)现有标号依次为1,2,…,n的n个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从号盒子里取出2个球放入n号盒子为止.
(1)当时,求2号盒子里有2个红球的概率;
(2)当时,求3号盒子里的红球的个数的分布列;
(3)记n号盒子中红球的个数为,求的期望.
16.(23-24高三上·江苏淮安·期中)如图,是半球的直径,是底面半圆弧上的两个三等分点,是半球面上一点,且.

(1)证明:平面:
(2)若点在底面圆内的射影恰在上,求直线与平面所成角的正弦值.
17.(23-24高二上·江苏盐城·阶段练习)已知,M为平面上一动点,且满足,记动点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若,过点的动直线交曲线E于P,Q(不同于A,B)两点,直线AP与直线BQ的斜率分别记为,,求证:为定值,并求出定值.
18.(2024·北京房山·一模)已知函数.
(1)当时,求曲线在点处的切线方程;
(2)设,求函数的极大值;
(3)若,求函数的零点个数.
参考答案:
1.(1)
(2)
【分析】(1)由两角和的正弦公式以及正弦定理可得,可得结果;
(2)由三角形面积公式并利用,可得,再由余弦定理即可求得,由三角形的面积公式可得结果.
【详解】(1)因为,
由正弦定理可得
,所以,故,.
(2)由题意可知,
即,化简可得,
在中,由余弦定理得,
从而,解得或(舍),
所以.
2.(1)
(2)证明见解析
【分析】(1)求出给定的等差数列通项公式,再利用前n项和求通项的方法求解作答即可;
(2)利用(1)的结论,结合裂项相消法即可得解.
【详解】(1)因是公差为1的等差数列,而,则,
因此,即,
当时,,
经检验,满足上式,
所以的通项公式是.
(2)证明:由(1)知:,
所以
.
3.(1)
(2)分布列见解析,数学期望为
【分析】(1)分甲乙全胜两种情况相加得结果;
(2)利用分布列步骤求解并求得期望.
【详解】(1)甲3局全胜的概率为,
乙3局全胜的概率为,
进行3局比赛决出冠亚军的概率为
(2)的可能取值为1,2,


故的分布列为:
1 2
故.
4.(1)证明见解析
(2)
【分析】(1)根据余弦定理、勾股定理的逆定理,结合面面垂直的性质定理、线面垂直的性质进行求解即可;
(2)建立空间直角坐标系,利用空间向量夹角公式进行求解即可.
【详解】(1)在梯形中,设,
由,
,,
即,所以可得.
又平面平面,平面平面平面,
所以平面,平面,所以平面平面
又等边是棱的中点,所以,
平面平面平面,
所以平面,平面,
故.
(2)取中点,易知,所以平面,

建立如图空间直角坐标系,设,则

由(1)知平面的一个法向量是,

设是平面的法向量,
则,
令,可得,
所以,
故平面与平面所成角的余弦值为.
5.(1)
(2)
【分析】(1)利用垂直可求的坐标,利用对称可得抛物线的方程;
(2)先求出的坐标,利用数量积得的表达式,结合二次函数可得最值.
【详解】(1)∵,点N与点F不重合,∴,∴.
∵点F关于点M的对称点为P,
∴,(中点坐标公式).
∴,得,
∴抛物线E的标准方程为.
(2)由(1)知,
易知直线AB的斜率存在,设直线AB的方程为,代入,整理得,,

设,则.
∵,
∴,
当时,取得最大值,为.
6.(1)在上为增函数;在上为减函数;
(2)
【分析】(1)直接利用函数的导数确定函数的单调区间.
(2)求导根据函数的单调性即可求解最值.
【详解】(1)的定义域为,
当时,,,
当,解得:,
当,解得:.
在上为增函数;在上为减函数;
(2)的定义域为,

当时,令,得,令时,得,
的递增区间为,递减区间为.
.
7.(1)
(2)
【分析】(1)利用递推关系,可求,的值;结合题意,可用“累加法”求数列的通项公式.
(2)可以把数列的前几项一一列举,然后求和,也可以用错位相减法求和.
【详解】(1)解法一:因为,,
所以,当时,,,所以.
当时,,,所以.
当时,

所以
当时,也符合上式.
综上,
解法二:因为,,,
所以,当时,,,所以.
当时,,,所以.
因为,
所以,即.
所以,即.
又,所以
(2)解法一:由(1)得,即

则①,

①-②,得,
所以,
故.
解法二:由(1)得,即.
记,

.
故.
8.(1)
(2)
【分析】(1)通过余弦定理、正弦定理将条件中的边转化为角即可求出结果;
(2)由余弦定理表示出,借助条件消去边,利用基本不等式求出的范围,进而求出的最大值.
【详解】(1)由余弦定理可得,
代入,得到,化简得,
即.由正弦定理可得,
即,展开得,
即,所以.
(2)由得,
故,
当且仅当,即时等号成立.
因为,所以,所以的最大值为.
9.(1)
(2)6,答案见解析
【分析】(1)确定X可能取值为4,5,6,7,分别求出概率后,由期望公式计算出期望;
(2)Y可能取值为4,5,6,7,设甲袋和乙袋抽取次数分别为和,利用独立事件概率公式求得的概率,再由期望公式计算出期望,根据白球对取到黑球的影响说明期望的大小关系.
【详解】(1)X可能取值为4,5,6,7,


(2)Y可能取值为4,5,6,7,设甲袋和乙袋抽取次数分别为和 ,




.
在将球分装时,甲袋中的黑球取完后直接取乙袋,若此时甲袋中还有其它球,则该球的干扰作用已经消失,所以同样是要取出4个黑球,调整后的方案总抽取次数的期望更低.
10.(1)证明见解析;
(2)存在,.
【分析】(1)利用面面垂直的性质、线面垂直的性质判定推理即得.
(2)作,建立空间直角坐标系,利用面面角的向量求法求解即得.
【详解】(1)在三棱柱中,由平面,平面,得,
在平面内过作于,由平面平面,平面平面,
得平面,而平面,则有,
显然平面,因此平面,又平面,
所以.

(2)过点作,由,得,
由(1)知平面,平面,则,即直线两两垂直,
以点为原点,直线分别为轴建立空间直角坐标系,
由,得,,
假定在棱上存在一点,使二面角的余弦值为,
令,则,,
设平面的一个法向量,则,
令,得,显然平面的一个法向量,
依题意,,解得,即,
所以在棱上存在一点,使二面角的余弦值为,.
11.(1);
(2)(ⅰ)证明见解析;(ⅱ)存在,
【分析】(1)设,利用两点间距离公式得,然后根据分类讨论求解即可;
(2)(ⅰ)设直线,与椭圆方程联立方程,结合韦达定理得,写出直线,的方程,进而求解即可;
(ⅱ)由题意点在以为直径的圆上,代入圆的方程求得,写出直线的方程,与椭圆联立,求得点C的坐标,进而可得答案.
【详解】(1)设是椭圆上一点,则,
因为,
①若,解得(舍去),
②若,解得(舍去)或,
所以点的坐标位.
(2)(ⅰ)设直线,
由,得,所以,
所以,①
由,得或,
易知直线的方程为,②
直线的方程为,③
联立②③,消去,得,④
联立①④,消去,则,
解得,即点在直线上;
(ⅱ)由图可知,,即,所以点在以为直径的圆上,
设,则,所以,即.
故直线的方程为,
直线的方程与椭圆方程联立,得,因为,
所以,所以,故.
12.(1)
(2)答案见解析
【分析】(1)求导,利用导数的几何意义得到切线方程;
(2)求导,对导函数因式分解,分,和三种情况,进行求解函数的单调性.
【详解】(1)当时,函数,则,切点坐标为,
,则曲线在点处的切线斜率为,
所求切线方程为,即.
(2),函数定义域为R,

①,解得或,解得,
所以在和上单调递增,在上单调递减,
②,解得或,解得,
所以在和上单调递增,在上单调递减,
③,恒成立,在上单调递增.
综上,当时,在和上单调递增,在上单调递减;
当时,在和上单调递增,在上单调递减;
当时,在上单调递增.
13.(1)答案见解析
(2)证明见解析
(3)
【分析】(1)根据题意写出满足性质的所有数表,再分别计算即可;
(2)根据题意,可知当取最大值时,存在,使得,由数表具有性质可得为奇数,不妨设此时数表为,再利用反证法证明即可;
(3)结合性质可得,,两式相加可得得,结合,可得,构造数表,结合性质进而可以求解.
【详解】(1)满足条件的数表为,
所以的值分别为5,5,6.
(2)若当取最大值时,存在,使得.
由数表具有性质可得为奇数,
不妨设此时数表为.
①若存在(为偶数,),使得,交换和的位置,所得到的新数表也具有性质,
调整后数表第一行和大于原数表第一行和,与题设矛盾,所以存在,使得.
②若对任意的(为偶数,),都有,交换和的位置,所得到的新数表也具有性质,此时转化为①的情况.
综上可知,存在正整数,使得.
(3)当n为偶数时,令,,对任意具有性质数表,
一方面,,
因此.①
另一方面,,
因此.②
记.
由①+②得.
又,可得.
构造数表
可知数表具有性质,且.
综上可知,当n为偶数时,的最大值为.
【点睛】方法点睛:在证明抽象问题时,常常使用反证法:先设题设不成立,结合条件推出矛盾,即可说明题目成立.
14.(1)
(2)
【分析】(1)由正弦定理求得的长,即可得的长,由三角形面积公式即可求得答案.
(2)设,利用余弦定理表示出,即可得的表达式,结合基本不等式确定其最小值,即可求得答案.
【详解】(1)在中,,,故,,
由正弦定理得,即,
而,
故,
故,
故三角形手巾的面积为
(2)设,则,
则在中,,
在中,,


由于,当且仅当,即时取等号,
故,
即取到最小值即取最小值时,,
即此时.
【点睛】关键点睛:第二问求解取最小值时的长,关键是设,分别利用余弦定理表示出,从而可得的表达式,进而利用基本不等式求解.
15.(1)
(2)分布列见解析
(3)
【分析】(1)由古典概率模型进行求解;
(2) 可取,求出对应的概率,再列出分布列即可;
(3) 记为第号盒子有三个红球和一个白球的概率,则,
为第号盒子有两个红球和两个白球的概率,则,
则第号盒子有一个红球和三个白球的概率为,且,化解得,即可求解.
【详解】(1)由题可知2号盒子里有2个红球的概率为;
(2)由题可知可取,


所以3号盒子里的红球的个数ξ的分布列为
1 2 3
P
(3)记为第号盒子有三个红球和一个白球的概率,则,
为第号盒子有两个红球和两个白球的概率,则,
则第号盒子有一个红球和三个白球的概率为,
且,
化解得,
得,
而则数列为等比数列,首项为,公比为,
所以,
又由求得:
因此.
【点睛】关键点点睛:记为第号盒子有三个红球和一个白球的概率,则,为第号盒子有两个红球和两个白球的概率,则,则第号盒子有一个红球和三个白球的概率为,且,即可求解.
16.(1)证明见解析
(2)
【分析】(1)连接,可证为的中点且,可得,又,由线面垂直的判定可证;
(2)以点为坐标原点,,,分别为,,轴,建立空间直角坐标系,用向量法可求解.
【详解】(1)连接,因为是底面半圆弧上的两个三等分点,
所以有,又因为,
所以都为正三角形,
所以,四边形是菱形,
记与的交点为,为和的中点,
因为,
所以三角形为正三角形,
所以,所以,
因为是半球面上一点,是半球的直径,所以,
因为,平面,
所以平面.
(2)因为点在底面圆内的射影恰在上,
由(1)知为的中点,为正三角形,所以,
所以底面,
因为四边形是菱形,所以,
即两两互相垂直,
以点为坐标原点,,,分别为,,轴,建立空间直角坐标系,如图所示,
则,
所以,,,
设平面的一个法向量为,
则,所以,
取,则,
设直线与平面的所成角为,
所以,
故直线与平面所成角的正弦值为.
17.(1)
(2)证明见解析;
【分析】(1)利用圆锥曲线的定义即可得曲线方程,但要注意只有双曲线右支;
(2)设直线方程,联立方程组,根据韦达定理进行运算可证为定值,之后求出定值即可.
【详解】(1)由题可知,则的轨迹是实轴长为,
焦点为即的双曲线的右支,则,
所以曲线的方程为:(或).
(2)由题可知过点的动直线斜率存在且不为,则设斜率为,
所以直线的方程为:,设,,

联立 ,可得,
则 ,可得,即或,


所以为定值,定值为.
18.(1)
(2)答案见解析
(3)
【分析】(1)求导,再根据导数的几何意义即可得解;
(2)求导,分,和三种情况讨论,再结合极大值的定义即可得解;
(3)令,则,再分的正负讨论,当时,分离参数可得,则函数零点的个数即为函数图象交点的个数,构造函数,利用导数求出其单调区间和极值,作出函数的大致图象,结合图象即可得解.
【详解】(1)当时,,,
则,
所以曲线在点处的切线方程为,即;
(2),则,
则,
当时,,此时函数无极值;
当时,令,则或,令,则,
所以函数在上单调递增,在上单调递减,
所以的极大值为;
当时,令,则或,令,则,
所以函数在上单调递增,在上单调递减,
而函数的定义域为,
所以此时函数无极值.
综上所述,当时,函数无极大值;
当时,的极大值为;
(3)令,则,
当时,,
所以时,函数无零点;
当时,由,得,所以,
则时,函数零点的个数即为函数图象交点的个数,
令,则,
当时,,当时,,
所以函数在上单调递增,在上单调递减,
所以,
又当时,且,当时,,
如图,作出函数的大致图象,

又,由图可知,所以函数的图象只有个交点,
即当时,函数只有个零点;
综上所述,若,函数有个零点.
【点睛】方法点睛:利用导数解决函数零点问题的方法:
(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;
(2)构造新函数法:将问题转化为研究两函数图象的交点问题;
(3)参变量分离法:由分离变量得出,将问题等价转化为直线与函数的图象的交点问题.
试卷第2页,共2页
试卷第1页,共1页2025二轮复习大题规范练(五)
一、基础保分练
1.(2024·黑龙江哈尔滨·一模)在中,角所对的边分别为,已知,角的平分线交边于点,且.
(1)求角的大小;
(2)若,求的面积.
2.(2024·黑龙江吉林·二模)已知是数列的前项和,,是公差为1的等差数列.
(1)求数列的通项公式;
(2)证明:.
3.(23-24高二上·陕西汉中·期末)某校举行围棋友谊赛,甲、乙两名同学进行冠亚军决赛,每局比赛甲获胜的概率是,乙获胜的概率是,规定:每一局比赛中胜方记1分,负方记0分,先得3分者获胜,比赛结束.
(1)求进行3局比赛决出冠亚军的概率;
(2)若甲以领先乙时,记表示比赛结束时还需要进行的局数,求的分布列及数学期望.
4.(23-24高三下·浙江·开学考试)如图,四棱锥中,平面平面为等边三角形,,是棱的中点.

(1)证明:;
(2)求平面与平面所成角的余弦值.
5.(2024·全国·模拟预测)已知F是抛物线E:的焦点,是抛物线E上一点,与点F不重合,点F关于点M的对称点为P,且.
(1)求抛物线E的标准方程;
(2)若过点的直线与抛物线E交于A,B两点,求的最大值.
6.(23-24高二上·浙江宁波·期末)已知函数.
(1)当时,求函数的单调区间;
(2)当时,求函数的最大值.
二、能力增分练
7.(2024·福建·模拟预测)已知各项均为正数的数列满足,且.
(1)写出,,并求的通项公式;
(2)记求.
8.(2023·福建福州·二模)记的内角,,的对边分别为,,.已知.
(1)求的值:
(2)求的最大值.
9.(2023·湖北武汉·一模)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.
(1)记总的抽取次数为X,求E(X);
(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.
10.(2023·四川雅安·一模)如图,在三棱柱中,直线平面,平面平面.

(1)求证:;
(2)若,在棱上是否存在一点,使二面角的余弦值为?若存在,求的值;若不存在,请说明理由.
11.(2024·浙江杭州·二模)已知是椭圆的左,右顶点,点与椭圆上的点的距离的最小值为1.
(1)求点的坐标.
(2)过点作直线交椭圆于两点(与不重合),连接,交于点.
(ⅰ)证明:点在定直线上;
(ⅱ)是否存在点使得,若存在,求出直线的斜率;若不存在,请说明理由.
12.(23-24高二下·全国·课前预习)已知函数.
(1)若,求曲线在点处的切线;
(2)讨论的单调性;
三、拓展培优练
13.(2023·北京东城·一模)已知数表中的项互不相同,且满足下列条件:
①;
②.
则称这样的数表具有性质.
(1)若数表具有性质,且,写出所有满足条件的数表,并求出的值;
(2)对于具有性质的数表,当取最大值时,求证:存在正整数,使得;
(3)对于具有性质的数表,当n为偶数时,求的最大值.
14.(22-23高一下·四川·期末)蜀绣又名“川绣”,与苏绣,湘绣,粤绣齐名,为中国四大名绣之一,蜀绣以其明丽清秀的色彩和精湛细腻的针法形成了自身的独特的韵味,丰富程度居四大名绣之首.1915年,蜀绣在国际巴拿马赛中荣获巴拿马国际金奖,在绣品中有一类具有特殊比例的手巾呈如图所示的三角形状,点D为边BC上靠近B点的三等分点,,.

(1)若,求三角形手巾的面积;
(2)当取最小值时,请帮设计师计算BD的长.
15.(23-24高三上·浙江温州·期末)现有标号依次为1,2,…,n的n个盒子,标号为1号的盒子里有2个红球和2个白球,其余盒子里都是1个红球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子,…,依次进行到从号盒子里取出2个球放入n号盒子为止.
(1)当时,求2号盒子里有2个红球的概率;
(2)当时,求3号盒子里的红球的个数的分布列;
(3)记n号盒子中红球的个数为,求的期望.
16.(23-24高三上·江苏淮安·期中)如图,是半球的直径,是底面半圆弧上的两个三等分点,是半球面上一点,且.

(1)证明:平面:
(2)若点在底面圆内的射影恰在上,求直线与平面所成角的正弦值.
17.(23-24高二上·江苏盐城·阶段练习)已知,M为平面上一动点,且满足,记动点M的轨迹为曲线E.
(1)求曲线E的方程;
(2)若,过点的动直线交曲线E于P,Q(不同于A,B)两点,直线AP与直线BQ的斜率分别记为,,求证:为定值,并求出定值.
18.(2024·北京房山·一模)已知函数.
(1)当时,求曲线在点处的切线方程;
(2)设,求函数的极大值;
(3)若,求函数的零点个数.
同课章节目录