福建省晋江市第一中学人教版必修二数学教案:4.1.2圆的一般方程

文档属性

名称 福建省晋江市第一中学人教版必修二数学教案:4.1.2圆的一般方程
格式 zip
文件大小 43.9KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2016-04-03 10:13:37

图片预览

文档简介

4.1.2圆的一般方程
一、课程目标:
1、文化价值:通过对圆的一般方程的研究培养学生探索发现及分析解决问题的实际能力。
2、人文价值:渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
3、审美价值:由圆的标准方程、一般方程发现数学的对称美。
二、核心概念:圆、圆心、半径、待定系数法
三、问题思辨:1、怎样的方程是圆的方程?如何判断?
2、研究方法:在直角坐标系中建立圆的方程研究之。
3、利用圆的方程研究与圆有关的问题。
四、教学建构:
1、知识与思想建构:在直角坐标系中建立圆的方程,建构几何与代数的关系。
2、问题与案例故事:
问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。
利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
3、同质异构:由圆的标准方程出发,导出圆的一般方程
五、教案设计
课题引入:
问题:求过三点A(0,0),B(1,1),C(4,2)的圆的方程。
利用圆的标准方程解决此问题显然有些麻烦,得用直线的知识解决又有其简单的局限性,那么这个问题有没有其它的解决方法呢?带着这个问题我们来共同研究圆的方程的另一种形式——圆的一般方程。
探索研究:
请同学们写出圆的标准方程:
(x-a)2+(y-b)2=r2,圆心(a,b),半径r.
  把圆的标准方程展开,并整理:
x2+y2-2ax-2by+a2+b2-r2=0.
取得

这个方程是圆的方程.
反过来给出一个形如x2+y2+Dx+Ey+F=0的方程,它表示的曲线一定是圆吗?
把x2+y2+Dx+Ey+F=0配方得
② (配方过程由学生去完成)这个方程是不是表示圆?
(1)当D2+E2-4F>0时,方程②表示(1)当时,表示以(-,-)为圆心,为半径的圆;
(2)当时,方程只有实数解,,即只表示一个点(-,-);
(3)当时,方程没有实数解,因而它不表示任何图形
综上所述,方程表示的曲线不一定是圆
只有当时,它表示的曲线才是圆,我们把形如的表示圆的方程称为圆的一般方程
我们来看圆的一般方程的特点:(启发学生归纳)
(1)①x2和y2的系数相同,不等于0.
 ②没有xy这样的二次项.
(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了.
(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
知识应用与解题研究:
例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径。
学生自己分析探求解决途径:①、用配方法将其变形化成圆的标准形式。②、运用圆的一般方程的判断方法求解。但是,要注意对于来说,这里的
.
例2:求过三点A(0,0),B(1,1),C(4,2)的圆的方程,并求这个圆的半径长和圆心坐标。
分析:据已知条件,很难直接写出圆的标准方程,而圆的一般方程则需确定三个系数,而条件恰给出三点坐标,不妨试着先写出圆的一般方程
解:设所求的圆的方程为:
∵在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于的三元一次方程组,

解此方程组,可得:
∴所求圆的方程为:

得圆心坐标为(4,-3).
或将左边配方化为圆的标准方程,,从而求出圆的半径,圆心坐标为(4,-3)
学生讨论交流,归纳得出使用待定系数法的一般步骤:
根据提议,选择标准方程或一般方程;
根据条件列出关于a、b、r或D、E、F的方程组;
解出a、b、r或D、E、F,代入标准方程或一般方程。
例3、已知线段AB的端点B的坐标是(4,3),端点A在圆上运动,求线段AB的中点M的轨迹方程。
分析:如图点A运动引起点M运动,而点A在已知圆上运动,点A的坐标满足方程。建立点M与点A坐标之间的关系,就可以建立点M的坐标满足的条件,求出点M的轨迹方程。
解:设点M的坐标是(x,y),点A的坐标是 ①
上运动,所以点A的坐标满足方程,即

把①代入②,得
( http: / / www.21cnjy.com )
课堂练习:课堂练习第1、2、3题
小结 :
1.对方程的讨论(什么时候可以表示圆)
2.与标准方程的互化
3.用待定系数法求圆的方程
4.求与圆有关的点的轨迹。
课后作业:习题4.1第2、3、6题
课后反思:本节课是在学习了圆的标准方程的基础上继续学习圆的一般方程,难度不大,学生接受起来容易,但要理解方程表示圆是有条件的,这是学生容易忽略的;同时要让学生明白标准方程与一般方程的几何特征与代数特征,能根据题目条件正确选择。