(共24张PPT)
4.3 一次函数的图象
第四章 一次函数
导入新课
讲授新课
当堂练习
课堂小结
第1课时 正比例函数的图象和性质
学习目标
1.理解函数图象的概念,掌握作函数图象的一般步骤.(重点)
2.掌握正比例函数的图象与性质,并能灵活运用解答有关问题.(难点)
1.在下列函数
2.函数有哪些表示方法
图象法、列表法、关系式法
是一次函数的是 ,是正比例函数的是 .
(2),(4)
(2)
三种方法可以相互转化
它们之间有什么关系
3.你能将关系式法转化成图象法吗
什么是函数的图象
知识回顾
例1:画出下面正比例函数y=2x的图象.
解:
x
y
1
0
0
-1
2
-2
…
…
…
…
2
4
-2
-4
关系式法
列表法
①列表
典例精析
正比例函数的图象的画法
一
讲授新课
y=2x
②描点
以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点
③连线
画函数图象的一般步骤:
①列表
②描点
③连线
根据这个步骤画出函数y=-3x的图象
要点归纳
这两个函数图象有什么共同特征?
y
1
2
4
5
-
1
-
2
-
3
-
4
-
5
-
1
-
2
-
3
-
4
1
4
3
0
y=
-
3x
3
2
x
1
2
5
-
1
-
2
-
3
-
4
-
5
-
1
-
2
-
3
-
4
1
4
3
0
-
3
2
x
y=2x
归纳总结
y=kx (k是常数,k≠0)的图象是一条经过原点的直线
y=kx(k≠0) 经过的象限
k>0 第一、三象限
k<0 第二、四象限
怎样画正比例函数的图象最简单?为什么?
由于两点确定一条直线,画正比例函数图象时我们只需描点(0,0)和点 (1,k),连线即可.
两点
作图法
O
用你认为最简单的方法画出下列函数的图象:
(1) y=-3x;(2)
x 0 1
y=-3x
0
-3
0
y=-3x
画一画
例2 已知正比例函数y=(m+1)xm2 ,它的图象经过第几象限?
m+1=2>0
该函数是正比例函数
m2=1
{
∴根据正比例函数的性质,k>0可得该图象经过一、三象限.
解:
(1)若函数图象经过第一、三象限,则k的取值
范围是________.
变式1: 已知正比例函数y=(k+1)x.
k>-1
(2)若函数图象经过点(2,4),则k_____.
解析:因为函数图象经过第一、三象限,所以
k+1>0,解得k>-1.
解析:将坐标(2,4)带入函数表达式中,得
4=(k+1)·2,解得k=1.
=1
变式2:当x>0时,y与x的函数解析式为y=2x ,
当x≤0时,y与x的函数解析为y=-2x ,则在同一直角
坐标系中的图象大致为( )
C
正比例函数图象的性质
二
画一画:在同一直角坐标系内画出正比例函数 y=x , y=3x, y=- x和 y=-4x 的图象.
这四个函数中,随着x的增大,y的值分别如何变化
当k>0时,
x增大时,y的值也增大;
当k<0时,
x增大时,y的值反而减小.
x
y
0
2
4
y = 2x
1
2
2
4
y随x的增大而增大
y随x的增大而减小
y = x
3
2
-3
-6
x
y
0
想一想:下列函数中,随着x的增大,y的值分别如何变化
在正比例函数y=kx中:
当k>0时,y的值随着x值的增大而增大;
当k<0时,y的值随着x值的增大而减小.
总结归纳
练一练
1.已知正比例函数y=kx (k>0)的图象上有两点(x1,y1),
(x2,y2),若x1<
2. 正比例函数y=k1x和y=k2x的图象如图,则k1和k2的大小关系是( )
A k1>k2 B k1=k2
C k1y=k1x
y=k2x
x
y
o
A
例3 已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大而减小,求m的值.
解:因为正比例函数y=mx的图象经过点(m,4),
所以4=m·m,解得m=±2.
又y的值随着x值的增大而减小,
所以m<0,故m=-2.
(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?
(2)正比例函数y= - x和y =-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?
|k|越大,直线越陡,直线越靠近y轴.
议一议
1.下列图象哪个可能是函数y=-x的图象( )
当堂练习
B
2.对于正比例函数y =(k-2)x,当x 增大时,y 随x 的增大而增大,则k的取值范围 ( )
A.k<2 B.k≤2
C.k>2 D.k≥2
C
3.函数y=-7x的图象经过第_________象限,经过点
_______与点 ,y随x的增大而_______.
二、四
(0,0)
(1,-7)
减小
4.已知正比例函数y=(2m+4)x.
(1)当m ,函数图象经过第一、三象限;
(2)当m ,y 随x 的增大而减小;
(3)当m ,函数图象经过点(2,10).
>-2
<-2
=0.5
5. 如图分别是函数y=k1 x,y=k2 x,y=k3 x,y=k4 x的图象. (1)k1 k2,k3 k4(填“>”或“<”或“=”);
(2)用不等号将k1, k2, k3, k4及0依次连接起来.
<
解: k1<k2 <0<k3 <k4
4
2
-2
-4
4
x
y
O
y =k4 x
-4
-2
2
y =k3 x
y =k2 x
y =k1 x
<
6. 已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .
(1)写出汽车行驶途中所耗油费y(元)与行程
x(km)之间的函数关系式.
(2)在平面直角坐标系内描出大致的函数图象.
(3)计算该汽车行驶220 km所需油费是多少.
y/元
x/km
1 2 3 4 5 6 7
6
5
4
3
2
1
O
(1)y=5×15x/100,
即 .
(2)
x 0 4
y 0 3
列表
(3)当x=220时,
答:该汽车行驶220 km所需油费是165元.
描点
连线
(元).
解:
课堂小结
正比例函数的图象和性质
图象:经过原点的直线.
当k>0时,经过第一、三象限;当k<0时,经过第二、四象限.
性质:当k>0时,y的值随x值的增大而增大;
当k<0时,y的值随x值的增大而减小.
画正比例函数图象的一般步骤:列表、描点、连线