八年级下册:2.4.2-一元一次不等式的应用 课件

文档属性

名称 八年级下册:2.4.2-一元一次不等式的应用 课件
格式 ppt
文件大小 2.0MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2024-12-14 17:46:24

图片预览

文档简介

(共13张PPT)
2.4 一元一次不等式
导入新课
讲授新课
当堂练习
课堂小结
第2课时 一元一次不等式的应用
1.会通过列一元一次不等式去解决生活中的实际问题,经历 “实际问题抽象为不等式模型”的过程;(重点)
2.体会解不等式过程中的化归思想与类比思想,体会分类讨论思想在用不等式解决实际问题中的应用.
学习目标
导入新课
1.应用一元一次方程解实际问题的步骤:
实际问题
找相等关系
设未知数
列出方程
检验解的合理性
解方程
2.将下列生活中的不等关系翻译成数学语言.
(1) 超过
(2) 至少
(3) 最多
>


回顾与思考
问题:小华打算在星期天与同学去登山,计划上午7点出发,到达山顶后休息2h,下午4点以前必须回到出发点. 如果他们去时的平均速度是3km/h,回来时的平均速度是4km/h,他们最远能登上哪座山顶(图中数字表示出发点到山顶的路程)?
一元一次不等式的应用
讲授新课
前面问题中涉及的数量关系是:
去时所花时间+休息时间+回来所花时间≤总时间.
解:设从出发点到山顶的距离为x km,
则他们去时所花时间为 h
回来所花时间为 h.
他们在山顶休息了2 h,又上午7点到下午4点之间总共相隔9 h,即所用时间应小于或等于9 h.
所以有 +2+ ≤ 9.
解得 x≤12.
因此要满足下午4点以前必须返回出发点,小华他们最远能登上D山顶.
例1 某种商品进价为200元,标价为300元出售,商场规定可以打折销售,但其利润率不能少于5%. 请你帮助售货员计算一下,这种商品最多可以按几折销售?
解: 设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%.
解得
x ≥ 7.
答:这种商品最多可以按七折销售.
分析: 本题涉及的数量关系是:
(出售价-进价)÷进价≥利润率.
典例精析
例2 一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?
解: 设小明答对了 x 道题,则他答错和不答
的共有 (25-x)道题.根据题意,得
4x-1×(25-x)≥85.
解这个不等式,得 x ≥ 22.
答:小明至少答对了22道题.
分析: 本题涉及的数量关系是:总得分≥85.
例3 当一个人坐下时,不宜提举超过4.5 kg的重物,以免受伤. 小明坐在书桌前,桌上有两本各重1.2 kg的画册和一批每本重0.4 kg的记事本. 如果小明想坐着搬动这两本画册和一些记事本. 问他最多只应搬动多少本记事本?
解: 设小明最多只应搬动x本记事本,则
解得 x≤5.25.
1.2×2+0.4x≤4.5.
答:小明最多只应搬动5本记事本.
由于记事本的数目必须是整数,所以x 的最大值为5.
分析: 本题涉及的数量关系是:
画册的总重+记事本的总重≤4.5 kg.
应用一元一次不等式解决实际问题的步骤:
实际问题
解不等式
列不等式
结合实际
确定答案
找出不等关系
设未知数
总结归纳
当堂练习
1.小明家的客厅长5 m,宽4 m.现在想购买边长为60 cm的正方形地板砖把地面铺满,至少需要购买多少块这样的地板砖?
解: 设需要购买x块地板砖,则有
5×4≤0.6×0.6x
解得 x ≥ 55.6
由于地板砖的数目必须是整数,所以x的最
小值为56.
答:小明至少要购买56块地板砖.
2. 某童装店按每套90元的价格购进40套童装,应缴纳的税费为销售额的10%. 如果要获得不低于900元的纯利润,每套童装的售价至少是多少元?
解: 设每套童装的售价是 x 元.
则 40x-90×40-40x·10%≥900.
解得
x ≥ 125.
答:每套童装的售价至少是125元.
分析: 本题涉及的数量关系是:
销售额-成本-税费≥纯利润(900元).
一元一次不等式的应用
课堂小结
实际问题

根据题意列不等式

解一元一次不等式


根据实际问题找出符合条件的解集或整数解

得出解决问题的答案