八年级下册:5.4.2-分式方程的解法

文档属性

名称 八年级下册:5.4.2-分式方程的解法
格式 ppt
文件大小 538.5KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2024-12-14 17:46:24

图片预览

文档简介

(共26张PPT)
第五章 分 式
导入新课
讲授新课
当堂练习
课堂小结
5.4 分式方程
第2课时 分式方程的解法
1.掌握可化为一元一次方程的分式方程的解法;(重点)
2.理解分式方程产生增根的原因,掌握分式方程验根的方法.(难点)
学习目标
导入新课
复习引入
1. 解一元一次方程的步骤:
移项,合并同类项,未知数系数化为1.
2. 解一元一次方程
解:3x-2(x+1)=6
3x-2x=6+2
x=8
你能试着解这个分式方程吗?
(2)怎样去分母?
(3)在方程两边乘什么样的式子才能把每一个分母都约去?
(4)这样做的依据是什么?
解分式方程最关键的问题是什么?
(1)如何把它转化为整式方程呢?
“去分母”
分式方程的解法
讲授新课
方程各分母最简公分母是:(30+x)(30-x)
解:方程①两边同乘(30+x)(30-x),得
检验:将x=6代入原分式方程中,左边= =右边,
因此x=6是原分式方程的解.
90(30-x)=60(30+x),
解得 x=6.
x=6是原分式方程的解吗?
解分式方程的基本思路:是将分式方程化为整式方程,具体做法是“去分母” 即方程两边同乘最简公分母.这也是解分式方程的一般方法.
归纳总结
下面我们再讨论一个分式方程:
解:方程两边同乘(x+5)(x-5),得
x+5=10,
解得 x=5.
x=5是原分式方程的解吗?
检验:将x=5代入原方程中,分母x-5和x2-25的值都为0,相应的分式无意义.因此x=5虽是整式方程x+5=10的解,但不是原分式方程 的解,实际上,这个分式方程无解.
想一想:
上面两个分式方程中,为什么
去分母后所得整式方程的解就是原分式方程的解,
而 去分母后所得整式方程的解却不是原分式方程的解呢?
真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.
我们再来观察去分母的过程:
90(30-x)=60(30+x)
两边同乘(30+x)(30-x)
当x=6时,(30+x)(30-x)≠0
真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.
x+5=10
两边同乘(x+5)(x-5)
当x=5时, (x+5)(x-5)=0
解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,所以分式方程的解必须检验.
怎样检验?
这个整式方程的解是不是原分式的解呢?
分式方程解的检验------必不可少的步骤
检验方法:
将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.
1.在方程的两边都乘以最简公分母,约去分母,化成整式方程.
2.解这个整式方程.
3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去。
4.写出原方程的根.
简记为:“一化二解三检验”.
知识要点
“去分母法”解分式方程的步骤
例1 解方程:
解 :方程两边都乘最简公分母x(x-2),得
解这个一元一次方程,得 x = -3.
检验:把 x=-3 代入原方程的左边和右边,得
因此 x = -3 是原方程的解.
典例精析
解:两边都乘以最简公分母(x+2)(x-2),
得 x+2=4.
解得 x=2.
检验:把x=2代入原方程,两边分母为0,分式无意义.
因此x=2不是原分式方程的解,从而原方程无解.
提醒:在去分母,将分式方程转化为整式方程解的过程中出现使最简公分母(或分母)为零的根是增根.
用框图的方式总结为:
分式方程
整式方程
去分母
解整式方程
x =a
检验
x =a是分式
方程的解
x =a不是分式
方程的解
x =a
最简公分母是
否为零?


例2
关于x的方程 的解是正数,则a的取值范围是____________.
解析:去分母得2x+a=x-1,解得x=-a-1,∵关于x的方程 的解是正数,∴x>0且x≠1,∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.
a<-1且a≠-2
若关于x的分式方程 无解,求m的值.
例3
解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.
解:方程两边都乘以(x+2)(x-2)得2(x+2)+mx=3(x-2),即(m-1)x=-10.
①当m-1=0时,此方程无解,此时m=1;
②方程有增根,则x=2或x=-2,
当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;
当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,
∴m的值是1,-4或6.
分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.
方法总结
1. 解分式方程 时,去分母后得到的整式方程是( )
A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7) D.2(x-8)-5x=8
A
2.若关于x的分式方程 无解,则m的值为 ( )
A.-1,5 B.1
C.-1.5或2 D.-0.5或-1.5
D
当堂练习
3.解方程
解: 方程两边乘x(x-3),得
2x=3x-9.
解得
x=9.
检验:当x=9时,x(x-3) ≠0.
所以,原分式方程的解为x=9.
4.解方程
解: 方程两边乘(x-1)(x+2),得
x(x+2)-(x-1)(x+2)=3.
解得
x=1.
检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是原分式方程的解.
所以,原分式方程无解.
5. 解方程:
解:去分母,得
解得
检验:把 代入
所以原方程的解为
6.若关于x的方程 有增根,求m的值.
解:方程两边同乘以x-2,
得2-x+m=2x-4,
合并同类项,得3x=6+m,
∴m=3x-6.
∵该分式方程有增根,
∴x=2,
∴m=0.
课堂小结
分式
方程的解法
注意
(1)去分母时,原方程的整式部分漏乘.
步骤
(去分母法)
一化(分式方程转化为整式方程);
二解(整式方程);
三检验(代入最简公分母看是否为零)
(2)约去分母后,分子是多项式时,没有添括号.(因分数线有括号的作用)
(3)忘记检验