(共27张PPT)
3.2 图形的旋转
导入新课
讲授新课
当堂练习
课堂小结
第1课时 旋转的定义和性质
第三章 图形的平移与旋转
学习目标
1.掌握旋转的有关概念及基本性质.(重点)
2.能够根据旋转的基本性质解决实际问题.
导入新课
情境引入
这些运动有什么共同的特点?
讲授新课
旋转的概念
一
观察与思考
B
O
A
45
0
问题 观察下列图形的运动,它有什么特点?
钟表的指针在不停地转动,从12时到4时,时针转动了______度.
120°
把时针当成一个图形,那么它可以绕着中心固定点转动一定角度.
思考:怎样来定义这种图形变换?
风车风轮的每个叶片在风的吹动下转动到新的位置.
怎样来定义这种图形变换?
把叶片当成一个平面图形,那么它可以绕着平面内中心固定点转动一定角度.
在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转.
O
P′
P
旋转中心
旋转角
对应点
旋转的定义
这个定点称为旋转中心.
转动的角称为旋转角.
转动的方向分为顺时针与逆时针.
如果图形上的点P经过旋转变为点P',这两个点叫做这个旋转的对应点.
知识要点
例1. △ ABD经过旋转后到△ ACE的位置.
(1)旋转中心是哪一点
(2)旋转了多少度 顺时针还是逆时针?
(3)如果M是AB的中点,经过上述旋转后,点M转到什么位置
A
B
C
E
M
.
解:(1)旋转中心是点A;
(2)旋转了60 °,逆时针;
(3)点M转到了AC的中点上.
D
典例精析
60°
若叶片 A 绕 O 顺时针旋转到叶片 B,则旋转中心是______,旋转角是_________,旋转角等于____度,其中的对应点有_______、 _______、 _______、 _______、 _______、 _______ .
O
A
C
D
E
F
O
∠AOB
60
F与A
A与B
B与C
C与D
D与E
E与F
填一填:
B
旋转中心
旋转角
旋转方向
必须明确
确定一次图形的旋转时,
温馨提示:①旋转的范围是“平面内”,其中“旋转中心,
旋转方向,旋转角度”称之为旋转的三要素;②旋转变换
同样属于全等变换.
归纳总结
A.30°
B.45°
C.90°
D.135°
例2 如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为( )
解析:对应点与旋转中心的连线的夹角,就是旋转角,由图可知,OB、OD是对应边,∠BOD是旋转角,所以,旋转角为90°.故选C.
C
旋转的性质
二
A
B
B′
A′
C
.
M′
M
.
.
.
.
45°
绕点C逆时针旋转45°.
合作探究
△ABC是如何运动到△A′B′C的位置?
旋转中心是点__________;
图中对应点有_______________________________________;
图中对应线段有_____________________________________.
每对对应线段的长度有怎样的关系?
图中旋转角等于________.
C
点A与点A′,点B与点B′,点M与点M′,点N与点N′
线段CA与CA′、CB与CB′、AB与A′B′
45°
相等
根据上图填空.
B'
A'
C'
A
B
C
O
线: AO=A'O ,BO=B'O ,CO=C'O
角:∠AOA'=∠BOB' =∠COC'
观察下图,你能得到什么结论?
D
E
A
B
F
C
O
1.对应点到旋转中心的距离相等;
2.任意一组对应点与旋转中心的连线所成的角都等于旋转角;
4.对应线段相等,对应角相等.
旋转的性质
知识要点
3.旋转中心是唯一不动的点;
例3 如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,BE=2,CE=3则∠BE′C=________度.
解析:连接EE′,
由旋转性质知BE=BE′,∠EBE′=90°,
∴∠BE'E=45°,
EE′
在△EE′C中,E′C=1,EC=3,
EE′
由勾股定理逆定理可知∠EE′C=90°,
∴∠BE′C=∠BE′E+∠EE′C=135°.
135
例4 如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.
求证:△BCF≌△BA1D;
解析:根据等腰三角形的性质得到AB=BC,∠A=
∠C,由旋转的性质得到A1B=AB=BC,∠A1=∠A=
∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;
证明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C,
由旋转的性质,可得
A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=
∠CBC1,
在△BCF与△BA1D中,
∴△BCF≌△BA1D(ASA).
1.下列现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.
A.2 B.3 C.4 D.5
2. 下列说法正确的是( )
A.旋转改变图形的形状和大小
B.平移改变图形的位置
C.平移图形可以向某方向旋转一定距离得到
D.由平移得到的图形也一定可由旋转得到
B
C
当堂练习
A
B
C
D
E
3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得Rt △ADE,点B的对应点D恰好落在BC边上.若AC= , ∠B=60 °,则CD的长为( )
A. 0.5 B. 1.5 C. D. 1
D
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到的.已知∠AOB=20 °, ∠ A ′ OB =24°,AB=3,OA=5,则A ′ B ′ = ,OA ′ = ,旋转角等于 .
3
5
44 °
5.△ABC绕点A旋转一定角度后得到△ADE,若BC=4,AC=3,则下列说法正确的是( )
A.DE=3
B.AE=4
C.∠CAB是旋转角
D.∠CAE是旋转角
D
6.如图(1)中,△ABC和△ADE都是等腰直角三角形,∠ACB和∠D都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合,再将图(1)作为“基本图形”绕着A点经过逆时针旋转得到图(2).两次旋转的角度分别为( )
A.45°,90°
B.90°,45°
C.60°,30°
D.30°,60°
A
7.如图所示,AB是长为4的线段,且CD⊥AB于O.你能借助旋转的方法求出图中阴影部分的面积吗?说说你的做法.
O
A
B
C
D
旋转到同一个象限,构成四分之一个圆
将一个直角三角板绕30°角的顶点顺时针旋转,使一直角边与原斜边在同一条直线上(如图所示).你知道旋转角是多少吗?连结BB’,△ABB’有什么特征吗?
150°
△ABB’是等腰三角形
课堂小结
旋转
定义
三要素:旋转中心,旋转方向和旋转角度
性质
旋转前后的图形全等;
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角.