北京市海淀区2024-2025学年高三上学期10月月考物理试卷
1.(2024高三上·海淀月考)如图所示,一台空调外机用两个三角形支架固定在外墙上,重力大小为,重心恰好在支架横梁和斜梁的连接点O的上方。横梁AO水平,斜梁BO跟横梁的夹角为30°,其中横梁对O点的拉力沿OA方向,忽略支架的重力,下列说法正确的是( )
A.一根斜梁对O点的支持力大小为2G
B.一根横梁对O点的拉力大小为
C.保持O点的位置不变,若把斜梁加长一点,则横梁对O点的拉力将减小
D.保持O点的位置不变,若把斜梁加长一点,则斜梁和横梁对O点的作用力将增大
【答案】B,C
【知识点】共点力的平衡
【解析】【解答】 对动态平衡问题,画出受力分析图是关键,可以用解析法,也可以用图解法求得最后结果。 对所选研究对象进行受力分析,并画出受力分析图。对研究对象所受的力进行处理,对三力平衡问题,一般根据平衡条件画出力合成时的平行四边形。对四力或四力以上的平衡问题,一般建立合适的直角坐标系,对各力按坐标轴进行分解。AB.以O点为研究对象,受到空调外机的压力F、OB支架的作用力F1和OA支架的作用力F2,受力如图所示
根据平衡条件,可知O点对空调外机的支持力为
由牛顿第三定律,可知空调外机对O点的压力
由受力图结合几何关系可得
,
故A错误,B正确;
C.保持O点的位置不变,若把斜梁加长一点,则此时θ变大,变大,可知横梁对O点的拉力将减小,故C正确;
D.根据题意,由平衡条件可知,斜梁和横梁对O点的作用力的合力与空调对O点的压力等大反向,则把斜梁加长一点,则斜梁和横梁对O点的作用力不变,故D错误。
故选BC。
【分析】 以O点为研究对象,由平衡条件即可求出横梁和斜梁的弹力大小;用平行四边形图解法分析横梁和斜梁弹力的变化。
2.(2024高三上·海淀月考)如图,质量均为m的两个小球A、B,由两根长均为L的轻绳系住悬挂在天花板上。现A、B随车一起向右做匀加速直线运动,绳与竖直方向的夹角为,某时刻车突然刹停,刹车前一瞬间小车的速度为v,则下列说法正确的是( )
A.刹车前悬挂B球的轻绳对车厢的拉力大小为
B.刹车前A球对车厢壁的压力为
C.刹车瞬间A、B两球的加速度大小分别为,
D.刹车瞬间A、B两球的加速度大小分别为,
【答案】B,C
【知识点】牛顿运动定律的应用—连接体;平抛运动;向心加速度
【解析】【解答】本题考查了牛顿第二定律的基本运用,知道小球与车厢具有相同的加速度,能由牛顿第二定律定性分析小球的运动状态。A.刹车前对B球分析,由牛顿第二定律可知
,
解得
,
故A错误;
B.刹车前对A球分析,可得
根据牛顿第三定律,A球对车厢壁的压力为
故B正确;
CD.刹车瞬时,小球A将向右开始摆动做圆周运动,此时的加速度等于向心加速度,则
当突然刹停时,由于惯性小球B将向右做平抛运动,则
故C正确;D错误。
故选BC。
【分析】 刹车前,对B球运用牛顿第二定律求解绳子拉力和小球的加速度,对小球A运用牛顿第二定律结合牛顿第三定律求解A球对车厢壁的压力;根据所学运动特征判断两小球的运动情况,从而求解加速度。
3.(2024高三上·海淀月考)如图为落水车辆救援过程的照片,救援吊机先将车辆从水里竖直向上匀速吊离水面,到达一定高度后,汽车沿圆弧轨迹匀速率被吊至河边公路,此过程中不断有水从车上滴下,不计空气阻力,下列说法正确的是( )
A.汽车离开水面后的匀速上升阶段,固定汽车的每根吊绳的拉力等于吊臂上的钢绳拉力的大小
B.汽车离开水面后的匀速上升阶段,吊绳对汽车做的功大于汽车增加的机械能
C.汽车离开水面后的匀速上升阶段,吊绳的拉力大小保持不变
D.汽车沿圆弧轨迹运动的阶段,汽车所受合力的冲量可能为零
【答案】B
【知识点】动量定理;力的平行四边形定则及应用;动能定理的综合应用
【解析】【解答】 本题主要是考查功能关系、共点力的平衡和动量定理。关键是弄清楚汽车的受力情况和运动情况,掌握功能关系应用方法。利用动量定理解答问题时,要注意分析运动过程中物体的受力情况,知道合外力的冲量才等于动量的变化。
A.由题图设对角吊绳间的夹角为θ,每根吊绳拉力为F,吊臂上的钢绳拉力为T,由力合成的平行四边形定则可得
解得
由于对角吊绳间的夹角大小不确定,可知固定汽车的每根吊绳的拉力与吊臂上的钢绳拉力的大小关系不能确定,A错误;
BC.汽车离开水面后的匀速上升阶段,不断有水从车上滴下,吊绳的拉力大小不断改变,吊绳对汽车的拉力大于汽车的重力,由动能定理可知,吊绳对汽车做的功大于汽车增加的机械能,B正确,C错误;
D.汽车沿圆弧轨迹运动的阶段,汽车的速度方向在变化,则汽车的速度一定变化,则动量一定变化,由动量定理可知,汽车所受合力的冲量不可能是零,D错误。
故选B。
【分析】 由共点力的平衡条件进行分析;根据功能关系分析吊绳对汽车做的功与汽车增加的机械能的大小关系;汽车离开水面后的匀速上升阶段,不断有水从车上滴下,由此分析吊绳的拉力大小;汽车沿圆弧轨迹运动的阶段,由动量定理分析汽车所受合力的冲量。
4.(2024高三上·海淀月考)如图所示,一列简谐横波沿x轴正方向传播,在时刻波传播到处的质点C,此时处的质点A在负方向最大位移处,在时刻质点A自计时开始后第一次运动到正方向最大位移处,则( )
A.该简谐横波的波速等于5m/s
B.质点C开始振动时的运动方向沿y轴负方向
C.在时间内,处的质点B通过的路程为4.0cm
D.在时刻,位于处的质点D处于平衡位置且开始沿y轴正方向运动
【答案】A,C,D
【知识点】横波的图象
【解析】【解答】 本题由波动图象读出波长、由波的传播方向判断质点的振动方向、由时间与周期关系求质点通过的路程都是常规问题。“上下坡法”是波的图象中常用的方法,要熟练掌握。A.由图可知,波长,质点A经过0.2s第一次到达正方向最大位移处,所以
解得
所以
故A正确;
B.波向x轴正方向传播,所以C开始振动的运动方向沿y轴正方向,故B错误;
C.,B由平衡位置向下运动到负方向最大位移处后回到平衡位置,通过的路程为4cm,故C正确;
D.时间,波传播的距离是1m,所以D质点开始振动,振动方向沿轴正方向,故D正确。
故选ACD。
【分析】 根据质点A的振动情况求得周期,读出波长,即可求得波速。简谐横波沿x轴正方向传播,由“上下坡法”判断质点C开始振动时的运动方向。根据时间与周期的关系求在t1~t2时间内质点B通过的路程。由x=vt求波传播的距离,再分析在t2时刻质点D的运动状态。
5.(2024高三上·海淀月考)宇航员抵达月球后,已知月球半径R,在月球表面向倾角为的固定斜面上,沿水平方向以抛出一个小球,运动时间t时落回该斜面,已知引力常量为G。则下面正确的是( )
A.月球表面的重力加速度为
B.月球的质量为
C.月球的密度为
D.月球的第一宇宙速度为
【答案】C,D
【知识点】万有引力定律;第一、第二与第三宇宙速度
【解析】【解答】 本题关键是要抓住星球表面处物体的重力等于万有引力,求得重力加速度,运用平抛运动运动的知识求出重力加速度,以及卫星所受的万有引力提供向心力进行列式求解。A.令小球的位移为x,则有
,
解得
故A错误;
B.在月球表面有
结合上述解得
故B错误;
C.月球的密度
结合上述解得
故C正确;
D.月球的第一宇宙速度等于近月表面运行的卫星的环绕速度,则有
结合上述解得
故D正确。
故选CD。
【分析】 根据速度的分解可解得月球表面的重力加速度,根据万有引力与重力的关系解得月球的质量,根据密度的公式计算密度。
6.(2024高三上·海淀月考)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.若不计空气阻力, 则在整个上升过程中,下列关于物体的速度大小v、机械能E、重力势能Ep、动能 Ek随时间变化的关系中,大致正确的是(取地面为零势面)( )
A. B.
C. D.
【答案】D
【知识点】功能关系;能量守恒定律;动能定理的综合应用;机械能守恒定律
【解析】【解答】 本题重点考查了力学中机械能相关的问题,动能与重力势能以及弹性势都属于能机械能,当只有重力做功时,动能与重力势能相互转化机械能保持不变。重力势能具有相对性,判断重力势能大小时首先要选取零势能参考面,但重力势能的变化量与零势能面的选取无关。
A.撤去F前
v-t图象是过原点的直线.撤去F后
v-t图象是向下倾斜的直线;故A错误;
B.设物体在恒力作用下的加速度为a,由功能原理可知机械能增量为
知E-t图象是开口向上的抛物线.撤去拉力后,机械能守恒,则机械能随时间不变;故B错误;
C.以地面为参考平面,撤去恒力前,重力势能为
Ep-t图象是开口向上的抛物线.撤去拉力后
Ep应先增大后减小;故C错误;
D.撤去恒力前,动能为
Ek-t图象是开口向上的抛物线(右支).撤去拉力后
Ek-t图象是开口向上的抛物线(左支),故D正确。
故选D。
【分析】竖直上升过程,物体先做匀加速后做匀减速运动,由运动学公式写出速度与时间的关系式;由功能关系写出机械能与时间的关系式;分别由重力势能和动能的表达写出两者与时间的关系式;与相应的图像对照即可解题。
7.(2024高三上·海淀月考)某同学在“探究加速度与物体受力的关系”实验中,使用了如图甲所示的实验装置。保持小车质量不变,改变砂桶中砂的质量,小车的加速度a随其所受拉力F变化图线如图乙所示。对图线未经过原点O的原因分析,可能正确的是( )
A.平衡小车所受阻力时木板右端垫得过高
B.未将木板右端垫高以平衡小车所受阻力
C.仅用桶中砂的重力来代替小车所受拉力F
D.小车质量未远大于砂和砂桶的总质量
【答案】A,C
【知识点】实验验证牛顿第二定律
【解析】【解答】“研究加速度与力的关系”实验应明确:①在正确平衡摩擦力的前提下,绳子拉力才等于小车受到的合力;②在满足砂和砂桶质量远小于小车质量的前提下,描出的a-F图象才是倾斜直线。AB.图线不过原点,说明在没有拉力时,小车已经加速运动,即平衡小车所受阻力时木板右端垫得过高,故A正确,B错误;
C.设桶的质量为m1,砂的质量为m2,在小车质量远大于砂和砂桶的总质量时,有
如果仅用桶中砂的重力来代替小车所受拉力F,则有
即在a轴有截距,故C正确;
D.如果小车质量M未远大于砂和砂桶的总质量m,则有
可得
影响图线的斜率,不影响截距,故D错误。
故选AC。
【分析】 解决实验问题首先要掌握该实验原理,了解实验的操作步骤和数据处理以及注意事项。对于实验我们要清楚每一项操作存在的理由。比如为什么要平衡摩擦力、为什么小车的质量要远大于砂和桶的总质量、为什么要先接通电源后释放纸带等。
8.(2024高三上·海淀月考)将一小球以初速度水平抛出,不计空气阻力,小球轨迹如图a所示,按此轨迹制作一条光滑轨道,并将轨道固定在竖直面,如图所示。现把质量为m的小球套在轨道上,从轨道顶点O由静止开始下滑,已知当地重力加速度为g,则沿该轨道下滑的小球( )
A.做平抛运动
B.始终处于失重状态
C.下滑高度h时,重力的瞬时功率为
D.与图a中的小球相比,下滑相同高度时,耗时相同
【答案】B,C
【知识点】机械能守恒定律
【解析】【解答】 本题主要考查了平抛运动的特点和曲线运动,关键是正确的受力分析判断出做功,明确重力的瞬时功率,其中v为竖直方向的速度。A.沿该轨道下滑的小球除受重力外,还受轨道的支持力,则小球不会做平抛运动,故A错误;
B.小球沿该轨道加速下滑,始终处于失重状态。故B正确;
C.小球下滑高度h时,由机械能守恒得
得
小球平抛运动下落高度h时,设速度方向与水平方向的夹角为,则
重力瞬时功率
联立解得
故C正确;
D.图a中的小球做平抛运动,竖直方向做自由落体运动,沿该轨道下滑的小球除受重力外,还受轨道的支持力,支持力有沿竖直向上的分力,使小球在竖直方向的加速度小于重力加速度,则下滑相同高度时,耗时较长,故D错误。
故选BC。
【分析】根据平抛运动的特点分析;小球加速下滑,处于失重状态;小球在b图中沿轨道加速下滑速度方向沿轨道的切线方向,即可求得重力的瞬时功率;利用受力分析判断出竖直方向加速度大小关系,判断出下滑所需时间。
9.(2024高三上·海淀月考)如图甲所示,质量为m的物块静止在竖直放置的轻弹簧上(物块与弹簧不相连),弹簧下端固定,劲度系数为k。时刻,对物块施加一竖直向上的外力F,使物块由静止向上运动,当弹簧第一次恢复原长时,撤去外力F。从0时刻到F撤去前,物块的加速度a随位移x的变化关系如图乙所示。重力加速度为g,忽略空气阻力,在物块上升阶段,下列说法正确的是( )
A.外力F为恒力,且大小为
B.物块的最大加速度大小为
C.弹簧的弹性势能减小了
D.外力F撤去后物块可以继续上升的最大高度为
【答案】A,C,D
【知识点】机械能守恒定律
【解析】【解答】 本题的关键是运用牛顿第二定律得到解析式,要灵活选择研究的状态,要知道x=0时,物块的合力等于F。A. 根据牛顿第二定律和胡克定律相结合得到a与x的关系式,再结合图像的信息求F的大小,根据图像可知,F撤去前瞬间,加速度为零,故
初始时
对物块有
整理可得
根据图像可知,是纵轴截距,所以F为恒力,故A正确;
B.初始时刻加速度最大,为
故B错误;
D.从初始到物体脱离弹簧,根据速度位移公式
可知a-x图象围成的面积表示,则有
从脱离弹力到最高点,根据动能定理有
联立解得外力F撤去后物块可以继续上升的最大高度为
故D正确;
C.从初始到物体脱离弹簧,根据功能关系有
解得
后来弹簧恢复为原长,弹簧的弹性势能减小了,故C正确。
故选ACD。
【分析】由牛顿第二定律求出物块的最大加速度大小;从开始到物块上升到最高点的过程,利用功能关系求物块上升的最大高度;根据弹力的平均值求弹簧最大弹性势能。
10.(2024高三上·海淀月考)有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。举例如下:如图所示,质量为M、倾角为的滑块A放于水平地面上。把质量为m的滑块B放在A的斜面上。忽略一切摩擦,有人求得B相对地面的加速度,式中g为重力加速度。对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”。但是,其中有一项是错误的。请你指出该项( )
A.当时,该解给出,这符合常识,说明该解可能是对的
B.当时,该解给出,这符合实验结论,说明该解可能是对的
C.当时,该解给出,这符合预期的结果,说明该解可能是对的
D.当时,该解给出,这符合预期的结果,说明该解可能是对的
【答案】D
【知识点】牛顿第二定律;牛顿运动定律的应用—板块模型
【解析】【解答】本题关键通过单位以及特殊值判断,如果有矛盾,就说明结论是错误的。在应用牛顿第二定律解决简单问题时,要先明确物体的受力情况,然后列出牛顿第二定律的表达式,再根据需要求出相关物理量。A.当时,则
则有
A正确;
B.当时,则
则有
B正确;
C.当时,可得
滑块A近似不动,可得
C正确;
D.当时,可知滑块A与滑块B分离,滑块B近似自由落体运动,则有。可该解给出
与实际不符,D错误。
故选D。
【分析】 根据加速度的表达式,根据每个选项给出的条件逐步分析,并与实际情况相联系,判断出正误。
11.(2024高三上·海淀月考)用图甲所示装置做“验证动量守恒定律”实验。实验中使用的小球1和2质量分别为、,直径分别为、。在木板上铺一张白纸,白纸上面铺放复写纸,记下重锤线所指的位置O。
(1)小球1和2的质量应满足 ,直径应满足 。(选填“大于”“等于”或“小于”)
(2)实验时,先不放小球2,使小球1从斜槽上某一点S由静止释放,找到其平均落地点的位置P,测量平抛射程OP。再把小球2静置于斜槽轨道末端,让小球1仍从S处由静止释放,与小球2碰撞,并多次重复。该实验需要完成的必要步骤还有______。(选填选项前的字母)
A.测量两个小球的质量、
B.测量小球1的释放点S距桌面的高度h
C.测量斜槽轨道末端距地面的高度H
D.分别找到小球1与小球2相碰后平均落地点的位置M、N
E.测量平抛射程OM、ON
(3)要验证两球碰撞前后动量守恒,仅需验证关系式 是否成立【用(2)中测量的量表示】。请分析说明可以这样验证的理由 。
(4)另一同学也用上述两球进行实验,但将实验装置进行了改装:如图乙所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球A、球B与木条的撞击点。实验时,首先将木条竖直立在轨道末端右侧并与轨道接触,让入射球A从斜轨上起始位置由静止释放,撞击点为;然后将木条平移到图中所示位置,入射球A从斜轨上起始位置由静止释放,确定其撞击点;再将入射球A从斜轨上起始位置由静止释放,与球B相撞,确定球A和球B相撞后的撞击点分别为和。测得与,,各点的高度差分别为、、若所测物理量满足表达式 时,则说明球A和球B碰撞中动量守恒。
【答案】(1)大于;等于
(2)A;D;E
(3);小球飞出时的水平速度与其水平射程成正比
(4)
【知识点】验证动量守恒定律
【解析】【解答】实验的一个重要的技巧是入射球和靶球从同一高度做平抛运动并且落到同一水平面上,故下落的时间相同,所以在实验的过程当中把本来需要测量的速度改为测量平抛过程当中水平方向发生的位移,可见掌握了实验原理才能顺利解决此类题目。
(1)为防止反弹,小球1和2的质量应满足大于;为保证对心碰撞,直径应满足等于。
(2)A.本实验要“验证动量守恒定律”,故需测量两个小球的质量、,故A正确;
B.小球1碰撞前的速度大小可以通过平抛运动规律求得
联立解得
实验中小球1每次都从同一位置S释放即可,无需测量释放点S距桌面的高度h,故B错误;
CDE.由于各小球做平抛运动的竖直高度相同,所以各小球下落时间相同,由
可得它们飞出时的水平速度与其落点的水平射程成正比,所以在验证动量守恒定律时,由
可得
所以,无需测量斜槽轨道末端距地面的高度H,需要测量各球平均落点的水平射程,故C错误,DE正确。
故选ADE。
(3)由于小球1和小球2都从同一高度做平抛运动落在水平地面上,由平抛运动规律可知其飞出时的水平速度与其落点的水平射程成正比,所以仅需验证关系式
即可验证两球碰撞前后动量守恒。
(4)小球做平抛运动,在竖直方向上
平抛运动时间
设轨道末端到木条的水平位置为x,根据
可知,碰前小球的初速度
碰后两个小球的速度
,
如果碰撞过程动量守恒,则
将速度代入动量守恒表达式解得
【分析】(1)根据实验原理和实验注意事项分析;
(2)每次下落高度一样,下落时间一样,可以用数学方法约掉。用水平位移之比代替速度之比。
(3)两球碰撞过程系统动量守恒,应用动量守恒定律求出实验需要验证的表达式,然后分析答题;
(4)应用平抛运动规律分析碰撞的速度,再由动量守恒定律列式求解。
(1)[1][2]为防止反弹,小球1和2的质量应满足大于;为保证对心碰撞,直径应满足等于。
(2)A.本实验要“验证动量守恒定律”,故需测量两个小球的质量、,故A正确;
B.小球1碰撞前的速度大小可以通过平抛运动规律求得
联立解得
实验中小球1每次都从同一位置S释放即可,无需测量释放点S距桌面的高度h,故B错误;
CDE.由于各小球做平抛运动的竖直高度相同,所以各小球下落时间相同,由可得它们飞出时的水平速度与其落点的水平射程成正比,所以在验证动量守恒定律时,由
可得
所以,无需测量斜槽轨道末端距地面的高度H,需要测量各球平均落点的水平射程,故C错误,DE正确。
故选ADE。
(3)[1][2]由于小球1和小球2都从同一高度做平抛运动落在水平地面上,由平抛运动规律可知其飞出时的水平速度与其落点的水平射程成正比,所以仅需验证关系式
即可验证两球碰撞前后动量守恒。
(4)小球做平抛运动,在竖直方向上
平抛运动时间
设轨道末端到木条的水平位置为x,根据可知,碰前小球的初速度
碰后两个小球的速度
,
如果碰撞过程动量守恒,则
将速度代入动量守恒表达式解得
12.(2024高三上·海淀月考)某同学用如图1所示的装置进行“用单摆测量重力加速度的大小”的实验。
(1)为了利用单摆较准确地测出重力加速度,应当选用以下哪些器材______。
A.长度为10cm左右的细绳 B.长度为100cm左右的细绳
C.直径为1.8cm的钢球 D.直径为1.8cm的木球
E.最小刻度为1mm的米尺 F.秒表、铁架台
(2)用游标卡尺测量摆球直径,如图2所示,可知摆球的直径d为 mm。
(3)选择好器材,将符合实验要求的单摆悬挂在铁架台上,在实验过程中以下操作正确的是______
A.摆球应尽量选质量大体积小且质量分布均匀的
B.摆长一定的情况下,摆角应大一些,以便于观察
C.单摆摆动稳定后,在摆球经过最低点时开始计时
D.用秒表测量单摆完成1次全振动所用时间并作为单摆的周期
(4)甲同学打算利用实验中测得数据直接代入公式求解本地的重力加速度,他在实验中测得:摆线长为L,摆球的直径为d,单摆完成N次全振动的时间为t,则他要将L、d、N、t代入的公式为 。
(5)北京和广州的两位同学,分别探究单摆的周期T与摆长l的关系,通过网络交流将两地的实验数据在同一张坐标纸上绘制了图像,如图所示。其中用北京的同学所测实验数据绘制的图像是图线 (选填“A”或“B”)
【答案】(1)B;C;E;F
(2)20.6
(3)A;C
(4)
(5)B
【知识点】验证机械能守恒定律;刻度尺、游标卡尺及螺旋测微器的使用
【解析】【解答】本题考查的是单摆测定重力加速度的实验,此题综合性较强,解决本题的关键掌握实验的原理,知道单摆测定重力加速度的方法和注意事项,懂得如何根据原理选择实验器材,分析实验误差。
(1)AB.为减小实验误差,应选择适当长些的细绳做摆线,不要用弹性绳。故A错误;B正确;
CD.为减小空气阻力对实验的影响,应选择质量大而体积小的球做摆球。故C正确;D错误;
EF.实验需要测量摆长,需要用到刻度尺,实验需要测量单摆的周期,测周期需要秒表,应把单摆固定在铁架台上。故EF正确。
故选BCEF。
(2)摆球的直径
(3)A.为减小空气阻力对实验的影响,应选择质量大而体积小且质量分布均匀的球做摆球。故A正确;
B.摆角应小于5°,才可看作简谐运动。故B错误;
C.为减小读数误差,摆摆动稳定后,在摆球经过最低点时(速度最大)开始计时。故C正确;
D.为减小误差,应测量多次全振动的总时间然后除以振动次数,得到周期。故D错误。故选AC。
(4)
由单摆周期公式
解得
(5)
根据
解得
图像的斜率
则图像的斜率越小,重力加速度越大,由于北京的重力加速度大于广州的重力加速度,因此在北京所做实验做出的T2-l图像的斜率较小,对应的图线是B。
【分析】 (1)根据实验原理和实验注意事项分析;
(2)根据游标卡尺的精度读得数据,游标卡尺不用估读;
(3)根据实验的原理和注意事项确定正确的操作步骤;
(4)由单摆周期公式得求解重力加速度表达式,
(5)结合图线的斜率和重力加速度g的关系确定两条图像的区别。
(1)AB.为减小实验误差,应选择适当长些的细绳做摆线。故A错误;B正确;
CD.为减小空气阻力对实验的影响,应选择质量大而体积小的球做摆球。故C正确;D错误;
EF.实验需要测量摆长,需要用到刻度尺,实验需要测量单摆的周期,测周期需要秒表,应把单摆固定在铁架台上。故EF正确。
故选BCEF。
(2)摆球的直径
(3)A.为减小空气阻力对实验的影响,应选择质量大而体积小且质量分布均匀的球做摆球。故A正确;
B.摆角应小于5°,才可看作简谐运动。故B错误;
C.为减小读数误差,摆摆动稳定后,在摆球经过最低点时(速度最大)开始计时。故C正确;
D.为减小误差,应测量多次全振动的总时间然后除以振动次数,得到周期。故D错误。故选AC。
(4)由单摆周期公式
解得
(5)根据
解得
图像的斜率
则图像的斜率越小,重力加速度越大,由于北京的重力加速度大于广州的重力加速度,因此在北京所做实验做出的T2-l图像的斜率较小,对应的图线是B。
13.(2024高三上·海淀月考)在“探究互成角度的两个力的合成规律”实验中的一次测量如图所示,两个测力计M、N的拉力方向互相垂直,即。若保持测力计M的读数不变,当角由图中所示的值逐渐减小时,要使橡皮筋的活动端仍在O点,可采用的办法是( )
A.增大N的读数,减小角 B.减小N的读数,减小角
C.减小N的读数,增大角 D.增大N的读数,增大角
【答案】B
【知识点】共点力的平衡
【解析】【解答】 本题考查验证力的平行四边形定则,实验过程中遇到的新问题要能够根据所学知识进行解决。依题意,当角的值逐渐减小时,要使橡皮筋的活动端仍在O点,即两个拉力的合力不变,如图所示
可采用的办法是减小N的读数,减小角。
故选B。
【分析】 要使结点不变,应保证合力不变,故可以根据平行四边形定则分析可以采取的办法。
14.(2024高三上·海淀月考)如图所示,水平地面上有一质量的物块,物块与水平地面间的动摩擦因数,在与水平方向成角斜向下的推力F作用下由静止开始向右做匀加速直线运动。已知,,,重力加速度g取,不计空气阻力。求:
(1)物块运动过程中加速度的大小;
(2)物块开始运动2.0s的过程中,推力F做功的平均功率;
(3)物块开始运动2.0s的过程中,推力F的冲量。
【答案】(1)解:由牛顿第二定律可得
代入数据解得
(2)解:由位移时间公式可得,物块开始运动2.0s的过程中的位移为
则有推力F做功的平均功率
(3)解:由冲量的定义式可得,物块开始运动2.0s的过程中,推力F的冲量为
【知识点】牛顿第二定律;功率及其计算;冲量
【解析】【分析】(1)求得物块的合力,再根据牛顿第二定律可求得加速度;
(2)先计算位移,再根据平均功率的计算公式解答;
(3)根据冲量的定义式解答。
(1)由牛顿第二定律可得
代入数据解得
(2)由位移时间公式可得,物块开始运动2.0s的过程中的位移为
则有推力F做功的平均功率
(3)由冲量的定义式可得,物块开始运动2.0s的过程中,推力F的冲量为
15.(2024高三上·海淀月考)如图甲所示,一质量为的小物块从倾角的斜面上的A点由静止开始滑下,最后停在水平面上的C点。已知小物块与斜面和水平面间的动摩擦因数相同,斜面与水平面在B点处平滑连接,小物块滑过斜面与水平面连接处时无机械能损失。从滑块滑上水平面BC开始计时,其运动的速度图像如图乙所示。已知,,
(1)求物块与水平面间的动摩擦因数;
(2)求A、B两点间的距离;
(3)若用始终平行于各处面的拉力将物块由C点拉回到A点,此过程中拉力至少要做多少功?
【答案】(1)解:由图乙求得物块在水平面上滑行的加速度大小为
根据牛顿第二定律,有
求得
(2)解:物块在斜面上滑行过程中,根据牛顿第二定律,有
另外
求得
(3)解:由图乙可知,物体在水平面上滑行的位移为
将物块由C点拉回到A点,若物体到达A点时的速度恰好为零,则拉力所做的功最少,设为W,该过程中,根据动能定理,有
求得
【知识点】加速度;牛顿运动定律的综合应用;动能定理的综合应用
【解析】【分析】 (1)先根据图像得到物块在水平面上的加速度,然后根据牛顿第二定律求解;
(2)先根据牛顿第二定律得到物块在斜面上的加速度,然后根据速度—位移公式计算;
(3)分析全过程各个力所做的功,根据动能定理计算。
(1)由图乙求得物块在水平面上滑行的加速度大小为
根据牛顿第二定律,有
求得
(2)物块在斜面上滑行过程中,根据牛顿第二定律,有
另外
求得
(3)由图乙可知,物体在水平面上滑行的位移为
将物块由C点拉回到A点,若物体到达A点时的速度恰好为零,则拉力所做的功最少,设为W,该过程中,根据动能定理,有
求得
16.(2024高三上·海淀月考)如图所示,是一种弹射玩具装置,水平轨道的左端A固定一轻质弹簧,弹簧自由状态下右端位于B点,质量的小物块甲静止在B点;在与B点相距的C处固定一竖直圆轨道,半径,圆轨道底端略微错开;在水平轨道的D点放置一质量小物块乙,物块一旦脱离轨道后将不再继续在轨道上运动,在与D点相距的E处固定一竖直四分之一圆轨道,半径足够大,物块与BC、DE段间的动摩擦因数,轨道其它部分的摩擦不计,重力加速度。现将小物块甲向左压缩弹簧后释放弹出,若弹簧的初始弹性势能为0.85J,求:
(1)求物块甲经过圆轨道C点时,所受到的轨道对其的作用力?
(2)判断物块甲是否能到达竖直圆轨道的最高点?
(3)若甲、乙碰撞后粘合为一体,求甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能?
【答案】(1)解:由题意可得
解得
小球在圆轨道C点时
解得
根据牛顿第三定律可得
方向竖直向下。
(2)解:通过圆轨道最高点的临界速度满足
解得
设物块甲通过圆轨道最高点速度为,由动能定理,可得
解得
即物块甲能到达竖直圆轨道的最高点。
(3)解:依题意,甲、乙碰撞过程动量守恒,可得
解得
二者继续向右运动过程,由能量守恒可得
解得
则甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能
【知识点】牛顿第三定律;动能定理的综合应用;机械能守恒定律;碰撞模型
【解析】【分析】(1)根据动能定理列式求得小球在C点的速度,在C点合力提供向心力,列式结合牛顿第三定律可求解物块甲经过圆轨道C点时,所受到的轨道对其的作用力;
(2)小球能通过圆周最高点条件为重力提供向心力,列式求临界速度,再由动能定理列式求解小球通过最低点速度,进而判断物块甲是否能到达竖直圆轨道的最高点;
(3)以甲、乙为系统,碰撞瞬间动量守恒,根据动量守恒列式求解碰后甲的速度,根据能量守恒计算甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能。
(1)由题意可得
解得
小球在圆轨道C点时
解得
根据牛顿第三定律可得
方向竖直向下。
(2)通过圆轨道最高点的临界速度满足
解得
设物块甲通过圆轨道最高点速度为,由动能定理,可得
解得
即物块甲能到达竖直圆轨道的最高点。
(3)依题意,甲、乙碰撞过程动量守恒,可得
解得
二者继续向右运动过程,由能量守恒可得
解得
则甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能
17.(2024高三上·海淀月考)如图所示,一截面为正方形的塑料管道固定在水平桌面上,管道内充满液体,其右端面上有一截面积为S的小喷口,喷口离地的高度为h(h远远大于喷口的直径)。管道中有一与截面平行的活塞,活塞沿管道向右匀速推动液体使液体从喷口水平射出,液体落地点离喷口的水平距离为。若液体的密度为ρ,重力加速度为g。液体在空中不散开,不计空气阻力,液体不可压缩且没有黏滞性。
(1)液体从小喷口水平射出速度的大小v0;
(2)喷射过程稳定后,空中液体的质量m;
(3)假设液体击打在水平地面上后速度立即变为零,求液体击打地面水平向右的平均作用力的大小Fx。
【答案】(1)解:因为液体做平抛运动,水平方向上
竖直方向上
解得
(2)解:由于喷出的时间为
故空中液体的质量
联立,解得
(3)解:设液体与水平地面间的作用时间为Δt,取Δt时间内液体为研究对象。液体水平向右的初速度为v0,末速度为0,取向右为正方向,根据动量定理得
又
解得
根据牛顿第三定律可知
【知识点】牛顿第三定律;动量定理;平抛运动
【解析】【分析】(1)液体从喷口射出后,做平抛运动,运用运动的分解法,根据分位移公式求液体从小喷口水平射出速度的大小v0;
(2)喷射过程稳定后,空中液体的质量m等于流量、运动时间、密度的乘积;
(3)设在时间Δt内有质量为Δm的液体打在地面上,对液体,在水平方向利用动量定理求出地球对液体的平均作用力,根据牛顿第三定律得到液体击打地面水平向右的平均作用力的大小F。
(1)因为液体做平抛运动,水平方向上
竖直方向上
解得
(2)由于喷出的时间为
故空中液体的质量
联立,解得
(3)设液体与水平地面间的作用时间为Δt,取Δt时间内液体为研究对象。液体水平向右的初速度为v0,末速度为0,取向右为正方向,根据动量定理得
又
解得
根据牛顿第三定律可知
18.(2024高三上·海淀月考)建筑工程中的“打桩”是利用重锤的冲击克服泥土对桩柱的阻力,使桩柱插入泥土到达预定深度的过程.如图甲所示,设打桩机重锤的质量为m,桩柱的质量为M。打桩过程可简化如下:桩柱下端开始时在地表面没有进入泥土,提升重锤到距离桩柱上端h高度后使其自由落下,重锤撞击桩柱上端,经极短时间的撞击使两者以共同的速度一起向下移动一段距离后停止。然后再次提升重锤,重复打桩过程,逐渐把桩柱打到预定深度。设桩柱向下移动的过程中泥土对桩柱的阻力f的大小与桩柱打入泥土中的深度x成正比,其函数表达式f=kx(k为大于0的常量,具体值未知),f-x图象如图乙所示.已知重力加速度大小为g。
(1)求重锤与桩柱第一次碰撞后瞬间的共同速度大小;
(2)图象法和比较法是研究物理问题的重要方法,例如从教科书中我们明白了由v-t图象求直线运动位移的思想和方法,请你借鉴此方法,根据图示的f-x图象结合函数式f=kx,分析推导在第一次打桩将桩柱打入泥土的过程中阻力所做的功与桩柱打入泥土深度的关系式;并将泥土对桩柱的阻力与你熟悉的弹簧弹力进行比较,从做功与能量转化的角度简要说明泥土对桩柱的阻力做功和弹簧弹力做功的不同;
(3)若重锤与桩柱第一次的撞击能把桩柱打入泥土中的深度为d,试求常量k的大小.
【答案】解:(1)设重锤落到桩柱上端时的速度为v0,对于重锤下落的过程,根据机械能守恒定律有
解得
重锤与桩柱相互作用过程极为短暂,冲击力远大于它们所受的重力,重锤与桩柱组成的系统,沿竖直方向动量守恒,设二者碰撞后共同运动的速度为v1,根据动量守恒定律有
解得
(2)由直线运动的v-t图象与横坐标轴所围的“面积”表示位移,比较阻力随深度变化的f-x图象可知,f-x图象与横坐标轴所围成的三角形的“面积”表示阻力功的大小
阻力对桩柱做负功,所以
由题可知:弹簧弹力的大小和泥土对桩柱的阻力大小变化的规律一样,都是大小与位移成正比.但是弹簧弹力做的功会使物体减少的机械能以弹性势能的形式存储起来,是不同形式的机械能之间的转化;而泥土对桩柱做的功会使物体减少的机械能都转化成了内能,是机械能转化为其他形式能的过程.泥土阻力一定做负功,弹簧弹力可以做正功,也可以做负功。
(3)对于第一次碰撞后获得共同速度到进入泥土深度为d的过程,根据动能定理有
可解得
【知识点】碰撞模型;动量与能量的其他综合应用
【解析】【分析】 (1)先自由落体运动的规律求出重锤与桩柱第一次碰撞前瞬间的速度,由动量守恒定律求出碰后共同速度;
(2)根据功能关系分析泥土对桩柱的阻力做功和弹簧弹力做功的不同;
(3)根据f-x图象求出克服阻力做的功,再由动能定理求出k的值。
19.(2024高三上·海淀月考)建立物理模型是解决实际问题的重要方法。
(1)如图1所示,圆和椭圆是分析卫星运动时常用的模型。已知地球质量为M,半径为R,万有引力常量为G。
①在P点进行变轨操作,可使卫星由近地轨道Ⅰ进入椭圆轨道Ⅱ。卫星在椭圆轨道Ⅱ的近地点P的速度为,在远地点D的速度为,远地点D到地心的距离为r。请你选择合适的方法计算的数值;
②由开普勒定律可知:所有行星绕太阳运动的轨道都是椭圆,轨道半长轴的三次方跟它的公转周期的二次方的比值k都相等。卫星绕地球运行也遵从该规律,请你选择合适的轨道模型,根据牛顿运动定律推导卫星绕地球运行的k值表达式,并说明k值由什么决定?
(2)我国首个火星探测器被命名为“天问一号”。为了简化问题,可以认为地球和火星在同一平面上绕太阳做匀速圆周运动,火星轨道半径约为地球轨道半径的1.5倍。从地球表面向火星发射火星探测器,简单又比较节省能量的发射过程可简化为:先在地球表面使探测器加速并获得足够的动能,经过一系列调整使探测器成为一颗沿地球公转轨道近似为圆形运行的人造行星;然后使探测器在适当位置加速,经椭圆轨道(霍曼转移轨道)到达火星。
①已知取无限远处为引力势能零点,间距为r、质量分别为和的两质点组成的系统具有的引力势能可表示为:,式中G为引力常量且大小已知。已知地球质量为M、半径为R,在如图2所示的坐标系中,纵轴表示引力势能,横轴表示质量为m的探测器到地心的距离r()。请在该坐标系中定性画出地球与探测器组成的系统具有的引力势能函数曲线。静置于地面处的该探测器,至少需要获得多大速度(相对于地心,不考虑地球的自转和空气阻力及其他天体的影响),才能摆脱地球引力的束缚;
②如图3所示,请利用开普勒行星运动定律计算,判断当火星运行到哪个位置(A、B、C、D、E、F、G)附近时,在地球公转轨道上H点的探测器开始发射(即瞬间加速,加速时间可忽略),此后探测器仅在太阳引力作用下,可经霍曼转移轨道在I点到达火星。(可能需要用到的数据:,)
【答案】(1)解:①卫星在椭圆轨道Ⅱ上运行时,在近地点和远地点的等效圆周运动的半径分别为和,由万有引力提供向心力,在近地点可得
在远地点可得
由椭圆的对称性可知
联立解得
②选择质量为的卫星以的轨道半径绕地球做匀速圆周运动,运动周期为,由地球的万有引力提供向心力,由牛顿第二定律可得
解得卫星绕地球运行的k值表达式
可知k值由地球质量决定。
(2)解:①由题意可知,地球与探测器组成的系统具有的引力势能函数曲线如图所示。探测器在地球表面的引力势能为
可知静置于地面处的探测器,至少需要获得速度,才能摆脱地球引力的束缚。由能量守恒定律可得
解得
②设地球绕太阳公转轨道半径为,则火星轨道半径约为,可知霍曼转移轨道半长轴为
对地球和探测器,由开普勒第三定律可得
解得
对地球和火星,由开普勒第三定律可得
解得
则有
在地球公转轨道上H点的探测器开始发射,到Ⅰ点的时间为探测器的半个周期,即
可知当火星运行到E点附近时开始发射。
【知识点】开普勒定律;卫星问题
【解析】【分析】 (1)①卫星在近日点和远日点围绕共同中心运动,根据开普勒第二定律解答;
②根据万有引力提供向心力,求解卫星绕地球运行的k值表达式;
(2)①求解势能表达式,根据功能关系,获得的动能至少等于势能增加量,据此分析解答;
②围绕共同中心运动,根据开普勒第三定律分析解答。
(1)①卫星在椭圆轨道Ⅱ上运行时,在近地点和远地点的等效圆周运动的半径分别为和,由万有引力提供向心力,在近地点可得
在远地点可得
由椭圆的对称性可知
联立解得
②选择质量为的卫星以的轨道半径绕地球做匀速圆周运动,运动周期为,由地球的万有引力提供向心力,由牛顿第二定律可得
解得卫星绕地球运行的k值表达式
可知k值由地球质量决定。
(2)①由题意可知,地球与探测器组成的系统具有的引力势能函数曲线如图所示。探测器在地球表面的引力势能为
可知静置于地面处的探测器,至少需要获得速度,才能摆脱地球引力的束缚。由能量守恒定律可得
解得
②设地球绕太阳公转轨道半径为,则火星轨道半径约为,可知霍曼转移轨道半长轴为
对地球和探测器,由开普勒第三定律可得
解得
对地球和火星,由开普勒第三定律可得
解得
则有
在地球公转轨道上H点的探测器开始发射,到Ⅰ点的时间为探测器的半个周期,即
可知当火星运行到E点附近时开始发射。
1 / 1北京市海淀区2024-2025学年高三上学期10月月考物理试卷
1.(2024高三上·海淀月考)如图所示,一台空调外机用两个三角形支架固定在外墙上,重力大小为,重心恰好在支架横梁和斜梁的连接点O的上方。横梁AO水平,斜梁BO跟横梁的夹角为30°,其中横梁对O点的拉力沿OA方向,忽略支架的重力,下列说法正确的是( )
A.一根斜梁对O点的支持力大小为2G
B.一根横梁对O点的拉力大小为
C.保持O点的位置不变,若把斜梁加长一点,则横梁对O点的拉力将减小
D.保持O点的位置不变,若把斜梁加长一点,则斜梁和横梁对O点的作用力将增大
2.(2024高三上·海淀月考)如图,质量均为m的两个小球A、B,由两根长均为L的轻绳系住悬挂在天花板上。现A、B随车一起向右做匀加速直线运动,绳与竖直方向的夹角为,某时刻车突然刹停,刹车前一瞬间小车的速度为v,则下列说法正确的是( )
A.刹车前悬挂B球的轻绳对车厢的拉力大小为
B.刹车前A球对车厢壁的压力为
C.刹车瞬间A、B两球的加速度大小分别为,
D.刹车瞬间A、B两球的加速度大小分别为,
3.(2024高三上·海淀月考)如图为落水车辆救援过程的照片,救援吊机先将车辆从水里竖直向上匀速吊离水面,到达一定高度后,汽车沿圆弧轨迹匀速率被吊至河边公路,此过程中不断有水从车上滴下,不计空气阻力,下列说法正确的是( )
A.汽车离开水面后的匀速上升阶段,固定汽车的每根吊绳的拉力等于吊臂上的钢绳拉力的大小
B.汽车离开水面后的匀速上升阶段,吊绳对汽车做的功大于汽车增加的机械能
C.汽车离开水面后的匀速上升阶段,吊绳的拉力大小保持不变
D.汽车沿圆弧轨迹运动的阶段,汽车所受合力的冲量可能为零
4.(2024高三上·海淀月考)如图所示,一列简谐横波沿x轴正方向传播,在时刻波传播到处的质点C,此时处的质点A在负方向最大位移处,在时刻质点A自计时开始后第一次运动到正方向最大位移处,则( )
A.该简谐横波的波速等于5m/s
B.质点C开始振动时的运动方向沿y轴负方向
C.在时间内,处的质点B通过的路程为4.0cm
D.在时刻,位于处的质点D处于平衡位置且开始沿y轴正方向运动
5.(2024高三上·海淀月考)宇航员抵达月球后,已知月球半径R,在月球表面向倾角为的固定斜面上,沿水平方向以抛出一个小球,运动时间t时落回该斜面,已知引力常量为G。则下面正确的是( )
A.月球表面的重力加速度为
B.月球的质量为
C.月球的密度为
D.月球的第一宇宙速度为
6.(2024高三上·海淀月考)静止在地面上的物体在竖直向上的恒力作用下上升,在某一高度撤去恒力.若不计空气阻力, 则在整个上升过程中,下列关于物体的速度大小v、机械能E、重力势能Ep、动能 Ek随时间变化的关系中,大致正确的是(取地面为零势面)( )
A. B.
C. D.
7.(2024高三上·海淀月考)某同学在“探究加速度与物体受力的关系”实验中,使用了如图甲所示的实验装置。保持小车质量不变,改变砂桶中砂的质量,小车的加速度a随其所受拉力F变化图线如图乙所示。对图线未经过原点O的原因分析,可能正确的是( )
A.平衡小车所受阻力时木板右端垫得过高
B.未将木板右端垫高以平衡小车所受阻力
C.仅用桶中砂的重力来代替小车所受拉力F
D.小车质量未远大于砂和砂桶的总质量
8.(2024高三上·海淀月考)将一小球以初速度水平抛出,不计空气阻力,小球轨迹如图a所示,按此轨迹制作一条光滑轨道,并将轨道固定在竖直面,如图所示。现把质量为m的小球套在轨道上,从轨道顶点O由静止开始下滑,已知当地重力加速度为g,则沿该轨道下滑的小球( )
A.做平抛运动
B.始终处于失重状态
C.下滑高度h时,重力的瞬时功率为
D.与图a中的小球相比,下滑相同高度时,耗时相同
9.(2024高三上·海淀月考)如图甲所示,质量为m的物块静止在竖直放置的轻弹簧上(物块与弹簧不相连),弹簧下端固定,劲度系数为k。时刻,对物块施加一竖直向上的外力F,使物块由静止向上运动,当弹簧第一次恢复原长时,撤去外力F。从0时刻到F撤去前,物块的加速度a随位移x的变化关系如图乙所示。重力加速度为g,忽略空气阻力,在物块上升阶段,下列说法正确的是( )
A.外力F为恒力,且大小为
B.物块的最大加速度大小为
C.弹簧的弹性势能减小了
D.外力F撤去后物块可以继续上升的最大高度为
10.(2024高三上·海淀月考)有一些问题你可能不会求解,但是你仍有可能对这些问题的解是否合理进行分析和判断。例如从解的物理量的单位,解随某些已知量变化的趋势,解在一定特殊条件下的结果等方面进行分析,并与预期结果、实验结论等进行比较,从而判断解的合理性或正确性。举例如下:如图所示,质量为M、倾角为的滑块A放于水平地面上。把质量为m的滑块B放在A的斜面上。忽略一切摩擦,有人求得B相对地面的加速度,式中g为重力加速度。对于上述解,某同学首先分析了等号右侧量的单位,没发现问题。他进一步利用特殊条件对该解做了如下四项分析和判断,所得结论都是“解可能是对的”。但是,其中有一项是错误的。请你指出该项( )
A.当时,该解给出,这符合常识,说明该解可能是对的
B.当时,该解给出,这符合实验结论,说明该解可能是对的
C.当时,该解给出,这符合预期的结果,说明该解可能是对的
D.当时,该解给出,这符合预期的结果,说明该解可能是对的
11.(2024高三上·海淀月考)用图甲所示装置做“验证动量守恒定律”实验。实验中使用的小球1和2质量分别为、,直径分别为、。在木板上铺一张白纸,白纸上面铺放复写纸,记下重锤线所指的位置O。
(1)小球1和2的质量应满足 ,直径应满足 。(选填“大于”“等于”或“小于”)
(2)实验时,先不放小球2,使小球1从斜槽上某一点S由静止释放,找到其平均落地点的位置P,测量平抛射程OP。再把小球2静置于斜槽轨道末端,让小球1仍从S处由静止释放,与小球2碰撞,并多次重复。该实验需要完成的必要步骤还有______。(选填选项前的字母)
A.测量两个小球的质量、
B.测量小球1的释放点S距桌面的高度h
C.测量斜槽轨道末端距地面的高度H
D.分别找到小球1与小球2相碰后平均落地点的位置M、N
E.测量平抛射程OM、ON
(3)要验证两球碰撞前后动量守恒,仅需验证关系式 是否成立【用(2)中测量的量表示】。请分析说明可以这样验证的理由 。
(4)另一同学也用上述两球进行实验,但将实验装置进行了改装:如图乙所示,将白纸、复写纸固定在竖直放置的木条上,用来记录实验中球A、球B与木条的撞击点。实验时,首先将木条竖直立在轨道末端右侧并与轨道接触,让入射球A从斜轨上起始位置由静止释放,撞击点为;然后将木条平移到图中所示位置,入射球A从斜轨上起始位置由静止释放,确定其撞击点;再将入射球A从斜轨上起始位置由静止释放,与球B相撞,确定球A和球B相撞后的撞击点分别为和。测得与,,各点的高度差分别为、、若所测物理量满足表达式 时,则说明球A和球B碰撞中动量守恒。
12.(2024高三上·海淀月考)某同学用如图1所示的装置进行“用单摆测量重力加速度的大小”的实验。
(1)为了利用单摆较准确地测出重力加速度,应当选用以下哪些器材______。
A.长度为10cm左右的细绳 B.长度为100cm左右的细绳
C.直径为1.8cm的钢球 D.直径为1.8cm的木球
E.最小刻度为1mm的米尺 F.秒表、铁架台
(2)用游标卡尺测量摆球直径,如图2所示,可知摆球的直径d为 mm。
(3)选择好器材,将符合实验要求的单摆悬挂在铁架台上,在实验过程中以下操作正确的是______
A.摆球应尽量选质量大体积小且质量分布均匀的
B.摆长一定的情况下,摆角应大一些,以便于观察
C.单摆摆动稳定后,在摆球经过最低点时开始计时
D.用秒表测量单摆完成1次全振动所用时间并作为单摆的周期
(4)甲同学打算利用实验中测得数据直接代入公式求解本地的重力加速度,他在实验中测得:摆线长为L,摆球的直径为d,单摆完成N次全振动的时间为t,则他要将L、d、N、t代入的公式为 。
(5)北京和广州的两位同学,分别探究单摆的周期T与摆长l的关系,通过网络交流将两地的实验数据在同一张坐标纸上绘制了图像,如图所示。其中用北京的同学所测实验数据绘制的图像是图线 (选填“A”或“B”)
13.(2024高三上·海淀月考)在“探究互成角度的两个力的合成规律”实验中的一次测量如图所示,两个测力计M、N的拉力方向互相垂直,即。若保持测力计M的读数不变,当角由图中所示的值逐渐减小时,要使橡皮筋的活动端仍在O点,可采用的办法是( )
A.增大N的读数,减小角 B.减小N的读数,减小角
C.减小N的读数,增大角 D.增大N的读数,增大角
14.(2024高三上·海淀月考)如图所示,水平地面上有一质量的物块,物块与水平地面间的动摩擦因数,在与水平方向成角斜向下的推力F作用下由静止开始向右做匀加速直线运动。已知,,,重力加速度g取,不计空气阻力。求:
(1)物块运动过程中加速度的大小;
(2)物块开始运动2.0s的过程中,推力F做功的平均功率;
(3)物块开始运动2.0s的过程中,推力F的冲量。
15.(2024高三上·海淀月考)如图甲所示,一质量为的小物块从倾角的斜面上的A点由静止开始滑下,最后停在水平面上的C点。已知小物块与斜面和水平面间的动摩擦因数相同,斜面与水平面在B点处平滑连接,小物块滑过斜面与水平面连接处时无机械能损失。从滑块滑上水平面BC开始计时,其运动的速度图像如图乙所示。已知,,
(1)求物块与水平面间的动摩擦因数;
(2)求A、B两点间的距离;
(3)若用始终平行于各处面的拉力将物块由C点拉回到A点,此过程中拉力至少要做多少功?
16.(2024高三上·海淀月考)如图所示,是一种弹射玩具装置,水平轨道的左端A固定一轻质弹簧,弹簧自由状态下右端位于B点,质量的小物块甲静止在B点;在与B点相距的C处固定一竖直圆轨道,半径,圆轨道底端略微错开;在水平轨道的D点放置一质量小物块乙,物块一旦脱离轨道后将不再继续在轨道上运动,在与D点相距的E处固定一竖直四分之一圆轨道,半径足够大,物块与BC、DE段间的动摩擦因数,轨道其它部分的摩擦不计,重力加速度。现将小物块甲向左压缩弹簧后释放弹出,若弹簧的初始弹性势能为0.85J,求:
(1)求物块甲经过圆轨道C点时,所受到的轨道对其的作用力?
(2)判断物块甲是否能到达竖直圆轨道的最高点?
(3)若甲、乙碰撞后粘合为一体,求甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能?
17.(2024高三上·海淀月考)如图所示,一截面为正方形的塑料管道固定在水平桌面上,管道内充满液体,其右端面上有一截面积为S的小喷口,喷口离地的高度为h(h远远大于喷口的直径)。管道中有一与截面平行的活塞,活塞沿管道向右匀速推动液体使液体从喷口水平射出,液体落地点离喷口的水平距离为。若液体的密度为ρ,重力加速度为g。液体在空中不散开,不计空气阻力,液体不可压缩且没有黏滞性。
(1)液体从小喷口水平射出速度的大小v0;
(2)喷射过程稳定后,空中液体的质量m;
(3)假设液体击打在水平地面上后速度立即变为零,求液体击打地面水平向右的平均作用力的大小Fx。
18.(2024高三上·海淀月考)建筑工程中的“打桩”是利用重锤的冲击克服泥土对桩柱的阻力,使桩柱插入泥土到达预定深度的过程.如图甲所示,设打桩机重锤的质量为m,桩柱的质量为M。打桩过程可简化如下:桩柱下端开始时在地表面没有进入泥土,提升重锤到距离桩柱上端h高度后使其自由落下,重锤撞击桩柱上端,经极短时间的撞击使两者以共同的速度一起向下移动一段距离后停止。然后再次提升重锤,重复打桩过程,逐渐把桩柱打到预定深度。设桩柱向下移动的过程中泥土对桩柱的阻力f的大小与桩柱打入泥土中的深度x成正比,其函数表达式f=kx(k为大于0的常量,具体值未知),f-x图象如图乙所示.已知重力加速度大小为g。
(1)求重锤与桩柱第一次碰撞后瞬间的共同速度大小;
(2)图象法和比较法是研究物理问题的重要方法,例如从教科书中我们明白了由v-t图象求直线运动位移的思想和方法,请你借鉴此方法,根据图示的f-x图象结合函数式f=kx,分析推导在第一次打桩将桩柱打入泥土的过程中阻力所做的功与桩柱打入泥土深度的关系式;并将泥土对桩柱的阻力与你熟悉的弹簧弹力进行比较,从做功与能量转化的角度简要说明泥土对桩柱的阻力做功和弹簧弹力做功的不同;
(3)若重锤与桩柱第一次的撞击能把桩柱打入泥土中的深度为d,试求常量k的大小.
19.(2024高三上·海淀月考)建立物理模型是解决实际问题的重要方法。
(1)如图1所示,圆和椭圆是分析卫星运动时常用的模型。已知地球质量为M,半径为R,万有引力常量为G。
①在P点进行变轨操作,可使卫星由近地轨道Ⅰ进入椭圆轨道Ⅱ。卫星在椭圆轨道Ⅱ的近地点P的速度为,在远地点D的速度为,远地点D到地心的距离为r。请你选择合适的方法计算的数值;
②由开普勒定律可知:所有行星绕太阳运动的轨道都是椭圆,轨道半长轴的三次方跟它的公转周期的二次方的比值k都相等。卫星绕地球运行也遵从该规律,请你选择合适的轨道模型,根据牛顿运动定律推导卫星绕地球运行的k值表达式,并说明k值由什么决定?
(2)我国首个火星探测器被命名为“天问一号”。为了简化问题,可以认为地球和火星在同一平面上绕太阳做匀速圆周运动,火星轨道半径约为地球轨道半径的1.5倍。从地球表面向火星发射火星探测器,简单又比较节省能量的发射过程可简化为:先在地球表面使探测器加速并获得足够的动能,经过一系列调整使探测器成为一颗沿地球公转轨道近似为圆形运行的人造行星;然后使探测器在适当位置加速,经椭圆轨道(霍曼转移轨道)到达火星。
①已知取无限远处为引力势能零点,间距为r、质量分别为和的两质点组成的系统具有的引力势能可表示为:,式中G为引力常量且大小已知。已知地球质量为M、半径为R,在如图2所示的坐标系中,纵轴表示引力势能,横轴表示质量为m的探测器到地心的距离r()。请在该坐标系中定性画出地球与探测器组成的系统具有的引力势能函数曲线。静置于地面处的该探测器,至少需要获得多大速度(相对于地心,不考虑地球的自转和空气阻力及其他天体的影响),才能摆脱地球引力的束缚;
②如图3所示,请利用开普勒行星运动定律计算,判断当火星运行到哪个位置(A、B、C、D、E、F、G)附近时,在地球公转轨道上H点的探测器开始发射(即瞬间加速,加速时间可忽略),此后探测器仅在太阳引力作用下,可经霍曼转移轨道在I点到达火星。(可能需要用到的数据:,)
答案解析部分
1.【答案】B,C
【知识点】共点力的平衡
【解析】【解答】 对动态平衡问题,画出受力分析图是关键,可以用解析法,也可以用图解法求得最后结果。 对所选研究对象进行受力分析,并画出受力分析图。对研究对象所受的力进行处理,对三力平衡问题,一般根据平衡条件画出力合成时的平行四边形。对四力或四力以上的平衡问题,一般建立合适的直角坐标系,对各力按坐标轴进行分解。AB.以O点为研究对象,受到空调外机的压力F、OB支架的作用力F1和OA支架的作用力F2,受力如图所示
根据平衡条件,可知O点对空调外机的支持力为
由牛顿第三定律,可知空调外机对O点的压力
由受力图结合几何关系可得
,
故A错误,B正确;
C.保持O点的位置不变,若把斜梁加长一点,则此时θ变大,变大,可知横梁对O点的拉力将减小,故C正确;
D.根据题意,由平衡条件可知,斜梁和横梁对O点的作用力的合力与空调对O点的压力等大反向,则把斜梁加长一点,则斜梁和横梁对O点的作用力不变,故D错误。
故选BC。
【分析】 以O点为研究对象,由平衡条件即可求出横梁和斜梁的弹力大小;用平行四边形图解法分析横梁和斜梁弹力的变化。
2.【答案】B,C
【知识点】牛顿运动定律的应用—连接体;平抛运动;向心加速度
【解析】【解答】本题考查了牛顿第二定律的基本运用,知道小球与车厢具有相同的加速度,能由牛顿第二定律定性分析小球的运动状态。A.刹车前对B球分析,由牛顿第二定律可知
,
解得
,
故A错误;
B.刹车前对A球分析,可得
根据牛顿第三定律,A球对车厢壁的压力为
故B正确;
CD.刹车瞬时,小球A将向右开始摆动做圆周运动,此时的加速度等于向心加速度,则
当突然刹停时,由于惯性小球B将向右做平抛运动,则
故C正确;D错误。
故选BC。
【分析】 刹车前,对B球运用牛顿第二定律求解绳子拉力和小球的加速度,对小球A运用牛顿第二定律结合牛顿第三定律求解A球对车厢壁的压力;根据所学运动特征判断两小球的运动情况,从而求解加速度。
3.【答案】B
【知识点】动量定理;力的平行四边形定则及应用;动能定理的综合应用
【解析】【解答】 本题主要是考查功能关系、共点力的平衡和动量定理。关键是弄清楚汽车的受力情况和运动情况,掌握功能关系应用方法。利用动量定理解答问题时,要注意分析运动过程中物体的受力情况,知道合外力的冲量才等于动量的变化。
A.由题图设对角吊绳间的夹角为θ,每根吊绳拉力为F,吊臂上的钢绳拉力为T,由力合成的平行四边形定则可得
解得
由于对角吊绳间的夹角大小不确定,可知固定汽车的每根吊绳的拉力与吊臂上的钢绳拉力的大小关系不能确定,A错误;
BC.汽车离开水面后的匀速上升阶段,不断有水从车上滴下,吊绳的拉力大小不断改变,吊绳对汽车的拉力大于汽车的重力,由动能定理可知,吊绳对汽车做的功大于汽车增加的机械能,B正确,C错误;
D.汽车沿圆弧轨迹运动的阶段,汽车的速度方向在变化,则汽车的速度一定变化,则动量一定变化,由动量定理可知,汽车所受合力的冲量不可能是零,D错误。
故选B。
【分析】 由共点力的平衡条件进行分析;根据功能关系分析吊绳对汽车做的功与汽车增加的机械能的大小关系;汽车离开水面后的匀速上升阶段,不断有水从车上滴下,由此分析吊绳的拉力大小;汽车沿圆弧轨迹运动的阶段,由动量定理分析汽车所受合力的冲量。
4.【答案】A,C,D
【知识点】横波的图象
【解析】【解答】 本题由波动图象读出波长、由波的传播方向判断质点的振动方向、由时间与周期关系求质点通过的路程都是常规问题。“上下坡法”是波的图象中常用的方法,要熟练掌握。A.由图可知,波长,质点A经过0.2s第一次到达正方向最大位移处,所以
解得
所以
故A正确;
B.波向x轴正方向传播,所以C开始振动的运动方向沿y轴正方向,故B错误;
C.,B由平衡位置向下运动到负方向最大位移处后回到平衡位置,通过的路程为4cm,故C正确;
D.时间,波传播的距离是1m,所以D质点开始振动,振动方向沿轴正方向,故D正确。
故选ACD。
【分析】 根据质点A的振动情况求得周期,读出波长,即可求得波速。简谐横波沿x轴正方向传播,由“上下坡法”判断质点C开始振动时的运动方向。根据时间与周期的关系求在t1~t2时间内质点B通过的路程。由x=vt求波传播的距离,再分析在t2时刻质点D的运动状态。
5.【答案】C,D
【知识点】万有引力定律;第一、第二与第三宇宙速度
【解析】【解答】 本题关键是要抓住星球表面处物体的重力等于万有引力,求得重力加速度,运用平抛运动运动的知识求出重力加速度,以及卫星所受的万有引力提供向心力进行列式求解。A.令小球的位移为x,则有
,
解得
故A错误;
B.在月球表面有
结合上述解得
故B错误;
C.月球的密度
结合上述解得
故C正确;
D.月球的第一宇宙速度等于近月表面运行的卫星的环绕速度,则有
结合上述解得
故D正确。
故选CD。
【分析】 根据速度的分解可解得月球表面的重力加速度,根据万有引力与重力的关系解得月球的质量,根据密度的公式计算密度。
6.【答案】D
【知识点】功能关系;能量守恒定律;动能定理的综合应用;机械能守恒定律
【解析】【解答】 本题重点考查了力学中机械能相关的问题,动能与重力势能以及弹性势都属于能机械能,当只有重力做功时,动能与重力势能相互转化机械能保持不变。重力势能具有相对性,判断重力势能大小时首先要选取零势能参考面,但重力势能的变化量与零势能面的选取无关。
A.撤去F前
v-t图象是过原点的直线.撤去F后
v-t图象是向下倾斜的直线;故A错误;
B.设物体在恒力作用下的加速度为a,由功能原理可知机械能增量为
知E-t图象是开口向上的抛物线.撤去拉力后,机械能守恒,则机械能随时间不变;故B错误;
C.以地面为参考平面,撤去恒力前,重力势能为
Ep-t图象是开口向上的抛物线.撤去拉力后
Ep应先增大后减小;故C错误;
D.撤去恒力前,动能为
Ek-t图象是开口向上的抛物线(右支).撤去拉力后
Ek-t图象是开口向上的抛物线(左支),故D正确。
故选D。
【分析】竖直上升过程,物体先做匀加速后做匀减速运动,由运动学公式写出速度与时间的关系式;由功能关系写出机械能与时间的关系式;分别由重力势能和动能的表达写出两者与时间的关系式;与相应的图像对照即可解题。
7.【答案】A,C
【知识点】实验验证牛顿第二定律
【解析】【解答】“研究加速度与力的关系”实验应明确:①在正确平衡摩擦力的前提下,绳子拉力才等于小车受到的合力;②在满足砂和砂桶质量远小于小车质量的前提下,描出的a-F图象才是倾斜直线。AB.图线不过原点,说明在没有拉力时,小车已经加速运动,即平衡小车所受阻力时木板右端垫得过高,故A正确,B错误;
C.设桶的质量为m1,砂的质量为m2,在小车质量远大于砂和砂桶的总质量时,有
如果仅用桶中砂的重力来代替小车所受拉力F,则有
即在a轴有截距,故C正确;
D.如果小车质量M未远大于砂和砂桶的总质量m,则有
可得
影响图线的斜率,不影响截距,故D错误。
故选AC。
【分析】 解决实验问题首先要掌握该实验原理,了解实验的操作步骤和数据处理以及注意事项。对于实验我们要清楚每一项操作存在的理由。比如为什么要平衡摩擦力、为什么小车的质量要远大于砂和桶的总质量、为什么要先接通电源后释放纸带等。
8.【答案】B,C
【知识点】机械能守恒定律
【解析】【解答】 本题主要考查了平抛运动的特点和曲线运动,关键是正确的受力分析判断出做功,明确重力的瞬时功率,其中v为竖直方向的速度。A.沿该轨道下滑的小球除受重力外,还受轨道的支持力,则小球不会做平抛运动,故A错误;
B.小球沿该轨道加速下滑,始终处于失重状态。故B正确;
C.小球下滑高度h时,由机械能守恒得
得
小球平抛运动下落高度h时,设速度方向与水平方向的夹角为,则
重力瞬时功率
联立解得
故C正确;
D.图a中的小球做平抛运动,竖直方向做自由落体运动,沿该轨道下滑的小球除受重力外,还受轨道的支持力,支持力有沿竖直向上的分力,使小球在竖直方向的加速度小于重力加速度,则下滑相同高度时,耗时较长,故D错误。
故选BC。
【分析】根据平抛运动的特点分析;小球加速下滑,处于失重状态;小球在b图中沿轨道加速下滑速度方向沿轨道的切线方向,即可求得重力的瞬时功率;利用受力分析判断出竖直方向加速度大小关系,判断出下滑所需时间。
9.【答案】A,C,D
【知识点】机械能守恒定律
【解析】【解答】 本题的关键是运用牛顿第二定律得到解析式,要灵活选择研究的状态,要知道x=0时,物块的合力等于F。A. 根据牛顿第二定律和胡克定律相结合得到a与x的关系式,再结合图像的信息求F的大小,根据图像可知,F撤去前瞬间,加速度为零,故
初始时
对物块有
整理可得
根据图像可知,是纵轴截距,所以F为恒力,故A正确;
B.初始时刻加速度最大,为
故B错误;
D.从初始到物体脱离弹簧,根据速度位移公式
可知a-x图象围成的面积表示,则有
从脱离弹力到最高点,根据动能定理有
联立解得外力F撤去后物块可以继续上升的最大高度为
故D正确;
C.从初始到物体脱离弹簧,根据功能关系有
解得
后来弹簧恢复为原长,弹簧的弹性势能减小了,故C正确。
故选ACD。
【分析】由牛顿第二定律求出物块的最大加速度大小;从开始到物块上升到最高点的过程,利用功能关系求物块上升的最大高度;根据弹力的平均值求弹簧最大弹性势能。
10.【答案】D
【知识点】牛顿第二定律;牛顿运动定律的应用—板块模型
【解析】【解答】本题关键通过单位以及特殊值判断,如果有矛盾,就说明结论是错误的。在应用牛顿第二定律解决简单问题时,要先明确物体的受力情况,然后列出牛顿第二定律的表达式,再根据需要求出相关物理量。A.当时,则
则有
A正确;
B.当时,则
则有
B正确;
C.当时,可得
滑块A近似不动,可得
C正确;
D.当时,可知滑块A与滑块B分离,滑块B近似自由落体运动,则有。可该解给出
与实际不符,D错误。
故选D。
【分析】 根据加速度的表达式,根据每个选项给出的条件逐步分析,并与实际情况相联系,判断出正误。
11.【答案】(1)大于;等于
(2)A;D;E
(3);小球飞出时的水平速度与其水平射程成正比
(4)
【知识点】验证动量守恒定律
【解析】【解答】实验的一个重要的技巧是入射球和靶球从同一高度做平抛运动并且落到同一水平面上,故下落的时间相同,所以在实验的过程当中把本来需要测量的速度改为测量平抛过程当中水平方向发生的位移,可见掌握了实验原理才能顺利解决此类题目。
(1)为防止反弹,小球1和2的质量应满足大于;为保证对心碰撞,直径应满足等于。
(2)A.本实验要“验证动量守恒定律”,故需测量两个小球的质量、,故A正确;
B.小球1碰撞前的速度大小可以通过平抛运动规律求得
联立解得
实验中小球1每次都从同一位置S释放即可,无需测量释放点S距桌面的高度h,故B错误;
CDE.由于各小球做平抛运动的竖直高度相同,所以各小球下落时间相同,由
可得它们飞出时的水平速度与其落点的水平射程成正比,所以在验证动量守恒定律时,由
可得
所以,无需测量斜槽轨道末端距地面的高度H,需要测量各球平均落点的水平射程,故C错误,DE正确。
故选ADE。
(3)由于小球1和小球2都从同一高度做平抛运动落在水平地面上,由平抛运动规律可知其飞出时的水平速度与其落点的水平射程成正比,所以仅需验证关系式
即可验证两球碰撞前后动量守恒。
(4)小球做平抛运动,在竖直方向上
平抛运动时间
设轨道末端到木条的水平位置为x,根据
可知,碰前小球的初速度
碰后两个小球的速度
,
如果碰撞过程动量守恒,则
将速度代入动量守恒表达式解得
【分析】(1)根据实验原理和实验注意事项分析;
(2)每次下落高度一样,下落时间一样,可以用数学方法约掉。用水平位移之比代替速度之比。
(3)两球碰撞过程系统动量守恒,应用动量守恒定律求出实验需要验证的表达式,然后分析答题;
(4)应用平抛运动规律分析碰撞的速度,再由动量守恒定律列式求解。
(1)[1][2]为防止反弹,小球1和2的质量应满足大于;为保证对心碰撞,直径应满足等于。
(2)A.本实验要“验证动量守恒定律”,故需测量两个小球的质量、,故A正确;
B.小球1碰撞前的速度大小可以通过平抛运动规律求得
联立解得
实验中小球1每次都从同一位置S释放即可,无需测量释放点S距桌面的高度h,故B错误;
CDE.由于各小球做平抛运动的竖直高度相同,所以各小球下落时间相同,由可得它们飞出时的水平速度与其落点的水平射程成正比,所以在验证动量守恒定律时,由
可得
所以,无需测量斜槽轨道末端距地面的高度H,需要测量各球平均落点的水平射程,故C错误,DE正确。
故选ADE。
(3)[1][2]由于小球1和小球2都从同一高度做平抛运动落在水平地面上,由平抛运动规律可知其飞出时的水平速度与其落点的水平射程成正比,所以仅需验证关系式
即可验证两球碰撞前后动量守恒。
(4)小球做平抛运动,在竖直方向上
平抛运动时间
设轨道末端到木条的水平位置为x,根据可知,碰前小球的初速度
碰后两个小球的速度
,
如果碰撞过程动量守恒,则
将速度代入动量守恒表达式解得
12.【答案】(1)B;C;E;F
(2)20.6
(3)A;C
(4)
(5)B
【知识点】验证机械能守恒定律;刻度尺、游标卡尺及螺旋测微器的使用
【解析】【解答】本题考查的是单摆测定重力加速度的实验,此题综合性较强,解决本题的关键掌握实验的原理,知道单摆测定重力加速度的方法和注意事项,懂得如何根据原理选择实验器材,分析实验误差。
(1)AB.为减小实验误差,应选择适当长些的细绳做摆线,不要用弹性绳。故A错误;B正确;
CD.为减小空气阻力对实验的影响,应选择质量大而体积小的球做摆球。故C正确;D错误;
EF.实验需要测量摆长,需要用到刻度尺,实验需要测量单摆的周期,测周期需要秒表,应把单摆固定在铁架台上。故EF正确。
故选BCEF。
(2)摆球的直径
(3)A.为减小空气阻力对实验的影响,应选择质量大而体积小且质量分布均匀的球做摆球。故A正确;
B.摆角应小于5°,才可看作简谐运动。故B错误;
C.为减小读数误差,摆摆动稳定后,在摆球经过最低点时(速度最大)开始计时。故C正确;
D.为减小误差,应测量多次全振动的总时间然后除以振动次数,得到周期。故D错误。故选AC。
(4)
由单摆周期公式
解得
(5)
根据
解得
图像的斜率
则图像的斜率越小,重力加速度越大,由于北京的重力加速度大于广州的重力加速度,因此在北京所做实验做出的T2-l图像的斜率较小,对应的图线是B。
【分析】 (1)根据实验原理和实验注意事项分析;
(2)根据游标卡尺的精度读得数据,游标卡尺不用估读;
(3)根据实验的原理和注意事项确定正确的操作步骤;
(4)由单摆周期公式得求解重力加速度表达式,
(5)结合图线的斜率和重力加速度g的关系确定两条图像的区别。
(1)AB.为减小实验误差,应选择适当长些的细绳做摆线。故A错误;B正确;
CD.为减小空气阻力对实验的影响,应选择质量大而体积小的球做摆球。故C正确;D错误;
EF.实验需要测量摆长,需要用到刻度尺,实验需要测量单摆的周期,测周期需要秒表,应把单摆固定在铁架台上。故EF正确。
故选BCEF。
(2)摆球的直径
(3)A.为减小空气阻力对实验的影响,应选择质量大而体积小且质量分布均匀的球做摆球。故A正确;
B.摆角应小于5°,才可看作简谐运动。故B错误;
C.为减小读数误差,摆摆动稳定后,在摆球经过最低点时(速度最大)开始计时。故C正确;
D.为减小误差,应测量多次全振动的总时间然后除以振动次数,得到周期。故D错误。故选AC。
(4)由单摆周期公式
解得
(5)根据
解得
图像的斜率
则图像的斜率越小,重力加速度越大,由于北京的重力加速度大于广州的重力加速度,因此在北京所做实验做出的T2-l图像的斜率较小,对应的图线是B。
13.【答案】B
【知识点】共点力的平衡
【解析】【解答】 本题考查验证力的平行四边形定则,实验过程中遇到的新问题要能够根据所学知识进行解决。依题意,当角的值逐渐减小时,要使橡皮筋的活动端仍在O点,即两个拉力的合力不变,如图所示
可采用的办法是减小N的读数,减小角。
故选B。
【分析】 要使结点不变,应保证合力不变,故可以根据平行四边形定则分析可以采取的办法。
14.【答案】(1)解:由牛顿第二定律可得
代入数据解得
(2)解:由位移时间公式可得,物块开始运动2.0s的过程中的位移为
则有推力F做功的平均功率
(3)解:由冲量的定义式可得,物块开始运动2.0s的过程中,推力F的冲量为
【知识点】牛顿第二定律;功率及其计算;冲量
【解析】【分析】(1)求得物块的合力,再根据牛顿第二定律可求得加速度;
(2)先计算位移,再根据平均功率的计算公式解答;
(3)根据冲量的定义式解答。
(1)由牛顿第二定律可得
代入数据解得
(2)由位移时间公式可得,物块开始运动2.0s的过程中的位移为
则有推力F做功的平均功率
(3)由冲量的定义式可得,物块开始运动2.0s的过程中,推力F的冲量为
15.【答案】(1)解:由图乙求得物块在水平面上滑行的加速度大小为
根据牛顿第二定律,有
求得
(2)解:物块在斜面上滑行过程中,根据牛顿第二定律,有
另外
求得
(3)解:由图乙可知,物体在水平面上滑行的位移为
将物块由C点拉回到A点,若物体到达A点时的速度恰好为零,则拉力所做的功最少,设为W,该过程中,根据动能定理,有
求得
【知识点】加速度;牛顿运动定律的综合应用;动能定理的综合应用
【解析】【分析】 (1)先根据图像得到物块在水平面上的加速度,然后根据牛顿第二定律求解;
(2)先根据牛顿第二定律得到物块在斜面上的加速度,然后根据速度—位移公式计算;
(3)分析全过程各个力所做的功,根据动能定理计算。
(1)由图乙求得物块在水平面上滑行的加速度大小为
根据牛顿第二定律,有
求得
(2)物块在斜面上滑行过程中,根据牛顿第二定律,有
另外
求得
(3)由图乙可知,物体在水平面上滑行的位移为
将物块由C点拉回到A点,若物体到达A点时的速度恰好为零,则拉力所做的功最少,设为W,该过程中,根据动能定理,有
求得
16.【答案】(1)解:由题意可得
解得
小球在圆轨道C点时
解得
根据牛顿第三定律可得
方向竖直向下。
(2)解:通过圆轨道最高点的临界速度满足
解得
设物块甲通过圆轨道最高点速度为,由动能定理,可得
解得
即物块甲能到达竖直圆轨道的最高点。
(3)解:依题意,甲、乙碰撞过程动量守恒,可得
解得
二者继续向右运动过程,由能量守恒可得
解得
则甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能
【知识点】牛顿第三定律;动能定理的综合应用;机械能守恒定律;碰撞模型
【解析】【分析】(1)根据动能定理列式求得小球在C点的速度,在C点合力提供向心力,列式结合牛顿第三定律可求解物块甲经过圆轨道C点时,所受到的轨道对其的作用力;
(2)小球能通过圆周最高点条件为重力提供向心力,列式求临界速度,再由动能定理列式求解小球通过最低点速度,进而判断物块甲是否能到达竖直圆轨道的最高点;
(3)以甲、乙为系统,碰撞瞬间动量守恒,根据动量守恒列式求解碰后甲的速度,根据能量守恒计算甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能。
(1)由题意可得
解得
小球在圆轨道C点时
解得
根据牛顿第三定律可得
方向竖直向下。
(2)通过圆轨道最高点的临界速度满足
解得
设物块甲通过圆轨道最高点速度为,由动能定理,可得
解得
即物块甲能到达竖直圆轨道的最高点。
(3)依题意,甲、乙碰撞过程动量守恒,可得
解得
二者继续向右运动过程,由能量守恒可得
解得
则甲、乙从开始碰撞到再次返回D点的过程中,甲、乙系统所损失的机械能
17.【答案】(1)解:因为液体做平抛运动,水平方向上
竖直方向上
解得
(2)解:由于喷出的时间为
故空中液体的质量
联立,解得
(3)解:设液体与水平地面间的作用时间为Δt,取Δt时间内液体为研究对象。液体水平向右的初速度为v0,末速度为0,取向右为正方向,根据动量定理得
又
解得
根据牛顿第三定律可知
【知识点】牛顿第三定律;动量定理;平抛运动
【解析】【分析】(1)液体从喷口射出后,做平抛运动,运用运动的分解法,根据分位移公式求液体从小喷口水平射出速度的大小v0;
(2)喷射过程稳定后,空中液体的质量m等于流量、运动时间、密度的乘积;
(3)设在时间Δt内有质量为Δm的液体打在地面上,对液体,在水平方向利用动量定理求出地球对液体的平均作用力,根据牛顿第三定律得到液体击打地面水平向右的平均作用力的大小F。
(1)因为液体做平抛运动,水平方向上
竖直方向上
解得
(2)由于喷出的时间为
故空中液体的质量
联立,解得
(3)设液体与水平地面间的作用时间为Δt,取Δt时间内液体为研究对象。液体水平向右的初速度为v0,末速度为0,取向右为正方向,根据动量定理得
又
解得
根据牛顿第三定律可知
18.【答案】解:(1)设重锤落到桩柱上端时的速度为v0,对于重锤下落的过程,根据机械能守恒定律有
解得
重锤与桩柱相互作用过程极为短暂,冲击力远大于它们所受的重力,重锤与桩柱组成的系统,沿竖直方向动量守恒,设二者碰撞后共同运动的速度为v1,根据动量守恒定律有
解得
(2)由直线运动的v-t图象与横坐标轴所围的“面积”表示位移,比较阻力随深度变化的f-x图象可知,f-x图象与横坐标轴所围成的三角形的“面积”表示阻力功的大小
阻力对桩柱做负功,所以
由题可知:弹簧弹力的大小和泥土对桩柱的阻力大小变化的规律一样,都是大小与位移成正比.但是弹簧弹力做的功会使物体减少的机械能以弹性势能的形式存储起来,是不同形式的机械能之间的转化;而泥土对桩柱做的功会使物体减少的机械能都转化成了内能,是机械能转化为其他形式能的过程.泥土阻力一定做负功,弹簧弹力可以做正功,也可以做负功。
(3)对于第一次碰撞后获得共同速度到进入泥土深度为d的过程,根据动能定理有
可解得
【知识点】碰撞模型;动量与能量的其他综合应用
【解析】【分析】 (1)先自由落体运动的规律求出重锤与桩柱第一次碰撞前瞬间的速度,由动量守恒定律求出碰后共同速度;
(2)根据功能关系分析泥土对桩柱的阻力做功和弹簧弹力做功的不同;
(3)根据f-x图象求出克服阻力做的功,再由动能定理求出k的值。
19.【答案】(1)解:①卫星在椭圆轨道Ⅱ上运行时,在近地点和远地点的等效圆周运动的半径分别为和,由万有引力提供向心力,在近地点可得
在远地点可得
由椭圆的对称性可知
联立解得
②选择质量为的卫星以的轨道半径绕地球做匀速圆周运动,运动周期为,由地球的万有引力提供向心力,由牛顿第二定律可得
解得卫星绕地球运行的k值表达式
可知k值由地球质量决定。
(2)解:①由题意可知,地球与探测器组成的系统具有的引力势能函数曲线如图所示。探测器在地球表面的引力势能为
可知静置于地面处的探测器,至少需要获得速度,才能摆脱地球引力的束缚。由能量守恒定律可得
解得
②设地球绕太阳公转轨道半径为,则火星轨道半径约为,可知霍曼转移轨道半长轴为
对地球和探测器,由开普勒第三定律可得
解得
对地球和火星,由开普勒第三定律可得
解得
则有
在地球公转轨道上H点的探测器开始发射,到Ⅰ点的时间为探测器的半个周期,即
可知当火星运行到E点附近时开始发射。
【知识点】开普勒定律;卫星问题
【解析】【分析】 (1)①卫星在近日点和远日点围绕共同中心运动,根据开普勒第二定律解答;
②根据万有引力提供向心力,求解卫星绕地球运行的k值表达式;
(2)①求解势能表达式,根据功能关系,获得的动能至少等于势能增加量,据此分析解答;
②围绕共同中心运动,根据开普勒第三定律分析解答。
(1)①卫星在椭圆轨道Ⅱ上运行时,在近地点和远地点的等效圆周运动的半径分别为和,由万有引力提供向心力,在近地点可得
在远地点可得
由椭圆的对称性可知
联立解得
②选择质量为的卫星以的轨道半径绕地球做匀速圆周运动,运动周期为,由地球的万有引力提供向心力,由牛顿第二定律可得
解得卫星绕地球运行的k值表达式
可知k值由地球质量决定。
(2)①由题意可知,地球与探测器组成的系统具有的引力势能函数曲线如图所示。探测器在地球表面的引力势能为
可知静置于地面处的探测器,至少需要获得速度,才能摆脱地球引力的束缚。由能量守恒定律可得
解得
②设地球绕太阳公转轨道半径为,则火星轨道半径约为,可知霍曼转移轨道半长轴为
对地球和探测器,由开普勒第三定律可得
解得
对地球和火星,由开普勒第三定律可得
解得
则有
在地球公转轨道上H点的探测器开始发射,到Ⅰ点的时间为探测器的半个周期,即
可知当火星运行到E点附近时开始发射。
1 / 1