第二章《有理数》单元备课
一、单元教材分析、学情分析:
1.本章的主要内容:
对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
2.本章的地位及作用:
本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。
二、教学重点和难点
重点:有理数加、减、乘、除、乘方运算
难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的认识。
三、教学具体措施:
要注意的几个问题
(1)有理数的两种分类经常用到,应注意它们的区别;
(2)数轴的三要素缺一不可,利用数轴可直观地比较有理数的大小;
(3)相反数指的是两个仅符号不同的数,数轴上表示一对相反数的两个点到原点的距离相等,它们的和为0;而倒数指的是两个乘积为1的数;
(4)一个数的绝对值总是非负数,数a的绝对值是数轴上表示数a的点到原点的距离;
(5)要熟练掌握运算法则,在法则的指导下进行运算,做到有理有据;要时刻注意运算的顺序,在计算前,要认真观察式子,选择正确的顺序进行运算;在每一步的计算过程中,要先确定符号,再进行绝对值的计算;灵活运用运算律可以提高运算的速度和正确率,运算律可以正向用也可以逆向用。
四、本章涉及到的主要数学思想及方法及教学目标:
1.分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。
2.数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。
3.化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。
4.类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。在学习过程中要时时考虑符号问题。用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。
五、教法建议
1.在学完数轴一节课后,把利用数轴比较有理数的大小补充进来,提前讲解,在讲完绝对值后,在利用绝对值比较两个负数的大小,这样做既可以体会到数轴的用途,也可以避免两种方法放在一起给学生造成的混乱,而利用绝对值比较有理数的大小,写法上学生一般情况下掌握不好,这样可以着重训练学生的写法,分散难点。
2.注重联系实际:这本教材的编排更注重了知识来源于生活,反过来又应用到生活中去的思想。充分体现了生活中处处有数学,人人都学有用的数学的理念。因此,在每课的“创设情境”这一环节中,要充分注意这一点,充分利用生活实例引入新知识,使学生充分体现到学好数学是有用的,因而提高学生学习数学的兴趣。
六、常见题型的处理建议:
1.赋值法:在学生遇到一些含有字母的式子中,往往很难判断结果,这时采用此方法,比较简单易行。但要注意赋值的范围。
2.数轴法:例如:有理数a,b,a﹤0,b﹥0, 且a的绝对值﹤b的绝对值,试比较a,b,﹣a,﹣b的大小。借助数轴进行比较。
七、教学进度配档表:
第二周 2.1-2.2
第三-四周 2.3
第五周 十一假期
第六-七周 2.4-2.5
第八周 2.6-2.8